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The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself
by producing undulations that propagate along its body and turns by assuming highly
curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7,
e40121 (2012)] all these postures can be accurately described by a piecewise-
harmonic-curvature model. We combine this curvature-based description with highly
accurate hydrodynamic bead models to evaluate the normalized velocity and turning
angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We
find that the worm moves twice as fast and navigates more effectively under a strong
confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio
resulting from the wall-mediated far-field hydrodynamic coupling between body seg-
ments. We also note that the optimal swimming gait is similar to the gait observed for
nematodes swimming in high-viscosity fluids. Our bead models allow us to determine
the effects of confinement and finite thickness of the body of the nematode on its loco-
motion. These effects are not accounted for by the classical resistive-force and slender-
body theories. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816718]

I. INTRODUCTION

Locomotion of small swimming organisms,1, 2 such as bacteria,3 nematodes,4–7 and planktonic
species,8 has significant implications for diverse fields of study. For example, fundamental aspects of
low-Reynolds-number locomotion are important for understanding long-range transport in swarms
of swimmers,9–12 analysis of fouling of submerged surfaces due to formation of bacterial biofilm,13

and description of evolutionary optimization.14 Locomotory mechanisms have also been harnessed in
the design of artificial swimmers15, 16 and functional microfluidic devices for biological assays.17–21

A number of recent locomotion studies focused on a submillimeter-size nematode Caenorhab-
ditis elegans.4–7, 22–27 This soil-dwelling worm is a model organism for investigations of genetic
regulation and neural control of muscular activity,28 motion,29, 30 and behavior.31–33 Quantitative
understanding of nematode locomotion is thus important for the mutant testing and analysis of
neuromuscular system. Drug screening assays also benefit from locomotion investigations since
motility of C. elegans is often used as a phenotypic readout for drug efficacy.34

C. elegans propels itself by producing sinuous undulation propagating along the body,35 and
turns by assuming strongly curved �- and loop-shaped body postures.33 The wavelength of the
undulation depends on the environment in which the nematode moves. Crawling on smooth surfaces
(such as agar in laboratory experiments), C. elegans assumes short-wave W -shaped body postures,
and during swimming in water it displays a longer-wave C-shaped body form. Using a simple set
of body movements, nematodes efficiently maneuver in diverse environments such as soft moist
surfaces, bulk and confined fluids, and complex inhomogeneous media. Typical body shapes of
C. elegans are illustrated in Fig. 1.
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FIG. 1. Typical body postures of C. elegans (a) crawling on agar (W -shape), (b) making �-turn on agar, and (c) swimming
in water (C-shape). The corresponding right panels show PHC description of the shapes in the left panels. Circles represent
the numerical skeletons of the worm images, and the lines show results of a single-mode PHC model (see Sec. II and
Ref. 36).

Recent investigations of the response of C. elegans to increased fluid viscosity24–26, 37 and
confinement pressure38 have shown a continuous transition between the long-wave swimming gait
in water and a short-wave gait (similar to the crawling gait) in high-viscosity fluids. Understanding
of this phenomenon will provide important clues for modeling neural control and biomechanics.

To elucidate this transition, a detailed analysis of hydrodynamics of swimming for a variety
of gaits is needed. Using numerical models, this study investigates nematode swimming in differ-
ent environments. Since experiments are often performed in parallel-wall cells,5, 23, 38 we consider
swimming in bulk fluids and in fluids confined between two parallel walls. The analysis draws on
our recently developed piecewise-harmonic-curvature (PHC) description of worm kinematics.36 As
discussed in Sec. II, the PHC model allows us to quantitatively describe nematode shapes used in
crawling and swimming. It is also a convenient tool to investigate turns.

In Sec. III we formulate a mobility relation for active-particle locomotion, present our hydro-
dynamic modeling techniques, and discuss the role of confinement in generating hydrodynamic
propulsive force. The results for swimming velocity for different nematode gaits are given in
Sec. IV. Our analysis of turning maneuvers presented in Sec. V (to our knowledge the first quantitative
study of the hydrodynamics of nematode turns) will have important implications for investigations
of nematode chemotaxis.39

II. NEMATODE KINEMATICS: PIECEWISE-HARMONIC-CURVATURE REPRESENTATION
OF NEMATODE GAIT

C. elegans moves forward by producing sinuous undulations and turns by assuming strongly
curved body shapes. Deformations of the nematode body take place in two dimensions, i.e., in the
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ventral–dorsal plane. The head of the nematode can additionally move normal to this plane, resulting
in three-dimensional motion. Here we restrict our analysis to two-dimensional swimming; the effects
of normal movements of nematode head will be described elsewhere.

We have recently demonstrated that the gait of crawling and swimming C. elegans can be
accurately modeled using a piecewise-harmonic expression for its body curvature.36 This PHC
representation applies to individual body shapes (including W -shapes, �-shapes, and C-shapes
depicted in Fig. 1) as well as to whole tracks of C. elegans crawling on agar. We have also shown
that a similar description applies to swimming C. elegans.

According to the PHC model, the evolution of the body shape is described by the curvature
wave propagating along the nematode body,

κw(s ′, t) = κ(s ′ + vs t), (1)

where vs is the wave-propagation velocity, t is the time, and s′ is the coordinate along the nematode
body (with s′ = 0 and s′ = L denoting the tail and head positions, respectively). The analysis of
nematode body postures36 shows that the curvature wave is well represented by the piecewise-
harmonic function

κ(s) =

⎧⎪⎨
⎪⎩

A1 cos(q1s + φ1), s0 ≤ s ≤ s1

A2 cos(q2s + φ2), s1 ≤ s ≤ s2

. . .

, (2)

with

s = s ′ + vs t, (3)

where si are the mode-change points, and Ai, qi, and φi are the amplitude, wavevector, and phase of
the mode i = 1, 2, . . . .

The real-space curves defined by the curvature κ(s) can be obtained by solving Frenet–Serret
equations [

ẍ(s)

ÿ(s)

]
= κ(s)

[
−ẏ(s)

ẋ(s)

]
, (4)

where x and y are the Cartesian coordinates in the plane of motion, and the dot denotes differentiation
with respect to the variable s.

According to Eq. (1), a sequence of nematode’s body postures corresponds to a line segment of
length L sliding with velocity vs along a curve defined by Eq. (4). In addition to sliding along the
curve, a swimming nematode undergoes a rigid-body translational and rotational slip with respect
to the surrounding medium. This dynamics is schematically illustrated in Fig. 2.

The family of curves defined by the single-mode relation

κ(s) = A cos(qs + φ) (5)

(b)

(a)

vs

t1 t2 t3

t1 t2 t3

FIG. 2. Time progressions for a crawling and a swimming nematode performing the same set of body movements: (a)
crawling worm (thick line) slides with velocity vs along a predetermined curve (thin line); (b) swimming worm undergoes
translational and rotational slip superposed with the motion along the curve.
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A/q = 0.5

A/q = 1.0

A/q = 1.5

A/q = 2.0

FIG. 3. Curves defined by sinusoidal curvature (5) for several values of the normalized amplitude A/q.

with different values of the normalized amplitude A/q is illustrated in Fig. 3. Changing q at a fixed
value of A/q results in rescaling of the whole curve. Single-mode fits (5) to the nematode shapes
depicted in the left panels of Fig. 1 are presented in the corresponding right panels. We note that
the shape of a nematode of length L at time t is described by three dimensionless parameters: the
normalized amplitude A/q, dimensionless wavevector qL, and the phase φ′ = φ + qvs t .

As argued in Ref. 36, nematodes use a single mode to move forward, and they switch modes in
order to turn. Our analysis of rectilinear swimming (see Sec. IV) explores the entire space of the PHC
parameters A/q and qL. We determine the dependence of the normalized swimming velocity on the
nematode gait, thus providing important insights regarding the gait transition observed for C. elegans
swimming in highly viscous fluids.24–26, 37 In our discussion of turning maneuvers (see Sec. V)
we use a more limited set of parameters, because in a multi-mode system the parameter space is
too large to be fully explored. Assuming that the nematode switches from the default W -shaped or
C-shaped forward-locomotion mode [cf. Figs. 1(a) and 1(c)] to �-shaped turning mode [cf. Fig. 1(b)]
and then reverts to the default mode, we focus on the dependence of the turning angle on the phases
at which the PHC modes are switched.

III. NEMATODE HYDRODYNAMICS

A. Balance of forces and torques acting on the nematode body

In our model, the undulating body of the nematode experiences hydrodynamic forces and torques
produced by the propagating wave of PHC. Under creeping flow conditions (assumed herein), the
total hydrodynamic force F and torque T acting on a swimming nematode can be expressed as
a superposition of the contribution produced by the predetermined motion with velocity vs along
the line defined by the PHC relation (2) and Frenet–Serret equations (4) [cf. Fig. 2(a)] and the
contribution due to the rigid-body translation and rotation with the linear and angular velocities urb

and ωrb [cf. Fig. 2(b)]. In the creeping flow regime both these terms are given by the linear friction
relations. The total force and torque balance can thus be expressed as[

F

T

]
=

[
ζ ta

ζ ra

]
vs +

[
ζ̂ t t ζ̂ tr

ζ̂ r t ζ̂ rr

]
·
[

urb

ωrb

]
, (6)

where ζ αa (α = t, r) are the active-force- and active-torque-generation tensors (with superscript
a referring to the active contribution), and ζ αβ (α, β = t, r) are the translational and rotational
hydrodynamic resistance tensors. All the above tensors depend on the instantaneous posture of the
nematode body. Since the nematode is force- and torque-free,[

F

T

]
= 0, (7)
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the friction relation (6) yields the following mobility relation for the rigid-body translation and
rotation of an active particle: [

urb

ωrb

]
= −

[
μ̂t t μ̂tr

μ̂r t μ̂rr

]
·
[

ζ ta

ζ ra

]
vs, (8)

where [
μ̂t t μ̂tr

μ̂r t μ̂rr

]
=

[
ζ̂ t t ζ̂ tr

ζ̂ r t ζ̂ rr

]−1

(9)

is the mobility matrix for a given nematode posture. In Secs. III B and III C, we describe our methods
for evaluating the above matrices using accurate bead-chain models.

B. Bead models

To determine the mobility matrix (9) we model the nematode as an active chain of hydrody-
namically interacting spheres. The chain performs a set of motions similar to a sequence of body
postures of a real nematode [see Fig. 4(a)]. In addition to the translational motion, the beads rotate to
mimic deformation of the interface of an elongated body, as illustrated in Fig. 4(b). In more detail,
the bead-chain kinematics is described in Appendix A.

For each chain configuration (in our simulations described by the PHC model), the active-force
and friction tensors ζ αβ in Eq. (6) are evaluated from the corresponding hydrodynamic-resistance
matrix for a system of hydrodynamically coupled spheres. The bead positions are then updated
according to the changing chain configuration and the rigid-body velocity (8). In our simulations,
we use the fourth-order Runge–Kutta method for time stepping.

It has been shown that bead-chain models faithfully reproduce hydrodynamic interactions of
elongated bodies,40 so we expect that our calculations accurately describe nematode motion. Details
of the chain kinematics and the relevant resistance relations are presented in Appendix A.

We consider a nematode swimming in two distinct geometries: (a) an unbounded fluid and
(b) the midplane of a parallel-wall channel. In the first case, the hydrodynamic interactions between
the beads representing the nematode body are evaluated using the HYDROMULTIPOLE method.41 In
the second case we apply the Cartesian-representation (CR) method,42, 43 and we also employ a
computationally efficient approximate Hele–Shaw-dipole (HSD) method (see Appendix B).

In our simulations of swimming nematodes we use chains of length N = 30 beads, consistent
with the average thickness-to-length ratio of C. elegans. Bead models allow us to determine effects
of finite body thickness and confining walls on the nematode locomotion. These effects are not
accounted for in the standard resistive force theory (RFT)44, 45 and slender-body theory (SBT),45, 46

vs

(a)

(b)

FIG. 4. Nematode body modeled as a chain of touching spheres. (a) The spheres follow the curve defined by the PHC model
with wave-velocity vs . (b) Prescribed individual bead rotations mimic the motion of the interface of the nematode.
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and a modified SBT for a confined cylinder between parallel walls47 is inaccurate for geometries
relevant for nematode locomotion, as discussed in Sec. III C.

C. Effect of confinement on transverse and longitudinal hydrodynamic forces

Effective undulatory locomotion requires large ratios ζ⊥/ζ || between the transverse and lon-
gitudinal resistance coefficients ζ⊥ and ζ || that describe friction forces acting on segments of an
elongated body.6, 44 As demonstrated in our earlier studies42, 43 (also see Refs. 47 and 48), the
resistance-coefficient ratio is significantly affected by confinement, and can be several times larger
in a parallel-wall channel than in unconfined fluid. Here we show that confinement enhances the
efficiency of undulatory swimming as a result of this increased resistance-coefficient ratio.

To elucidate the effect of confinement on the propulsion forces in undulatory swimming, we
consider the flow field produced by a rigid elongated body in transverse motion through an unconfined
fluid and along a flat parallel-wall channel. As schematically illustrated in Fig. 5, an unconfined
cylinder produces a long-range flow in the same overall direction as the velocity of the cylinder.
The resulting transverse resistance force is relatively low. In the limit of infinite cylinder length,
the transverse-to-longitudinal resistance-coefficient ratio logarithmically approaches the asymptotic
value ζ⊥/ζ || = 2,49, 50 and for finite cylinders it is even smaller.

In contrast, for a long cylinder strongly confined between two parallel walls (as shown in Fig. 6)
the transverse resistance is significantly larger. This large resistance stems from the pressure distribu-
tion needed to drive fluid flow from the region in front of the cylinder to the region behind it.42, 43, 48

For a tightly confined system, the fluid is forced around the ends of the cylinder, as opposed to
leaking between the cylinder and the walls [cf. Fig. 6(b)]. Thus, the cylinder acts as a piston pushing
fluid in the direction parallel to the walls. The parabolic flow produced by this elongated-piston
effect occurs over a distance comparable to the cylinder length and thus requires a large pressure
drop, producing a large resistance force.

The effect of the above hydrodynamic-friction mechanism on the resistance-coefficient ratio
ζ⊥/ζ || is depicted in Figs. 7 and 8 where we show ζ⊥/ζ || for submerged linear chains of spheres
moving in the midplane of a parallel-wall channel. In Fig. 7 the resistance-coefficient ratio is plotted
vs. the chain length N for different confinement ratios H/d (where H is the channel width and d is
the bead diameter). Figure 8 depicts the dependence of ζ⊥/ζ || on H/d for varying chain lengths. In
addition, Fig. 8 also compares our bead-chain results with the resistance-coefficient ratio calculated
using a modified SBT for a confined cylinder with d � H � l, where d is the cylinder diameter
and l is the cylinder length.47 We find that SBT significantly overpredicts the resistance ratio for
the systems considered in our study, most likely due to large logarithmic corrections resulting in a
narrow validity range of the approximation.

Our calculations show that, consistent with the elongated-piston mechanism, the resistance-
coefficient ratio increases with the increasing chain length. The largest ratio is observed at a di-
mensionless channel separation of H/d ≈ 1.3. For tighter confinements, the resistance forces are
dominated by the lubrication forces between the walls and the particle. The lubrication forces are

FIG. 5. Schematic of the flow field generated by an elongated body dragged in a transverse direction through an unconfined
fluid. Overall, the scattered flow is in the same direction as the velocity of the body; the resulting resistance force is moderate.
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(a)

(b) Large pressureLow pressure

FIG. 6. The elongated-piston effect: The motion of an elongated body dragged in the transverse direction in a parallel-wall
channel produces long-range pressure-driven recirculation pattern. The corresponding pressure drop across the body results
in a large resistance force. (a) Side view of the system and (b) top view.

 0

 2

 4
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 10

 0  10  20  30  40

ζ⊥
ζ||

N

1.1

H/d = 1.3

2.0
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10

FIG. 7. Ratio ζ⊥/ζ || between the transverse and longitudinal hydrodynamic-resistance coefficients for a linear chain of equal-
size spheres vs. the chain length N for unconfined system (dashed line) and parallel-wall channels (solid lines). Channel
width normalized by the bead diameter, H/d, is as labeled. The chain moves in the midplane of the channel.

FIG. 8. Ratio ζ⊥/ζ || between transverse and longitudinal hydrodynamic-resistance coefficients vs. normalized gap width
H/d. Solid lines represent linear chains of equal-size spheres with chain length N, as labeled. Results of a modified slender-
body theory47 for a confined cylinder of diameter d and infinite length are represented by a dotted line. Inset shows a blowup
of the region of the moderate values of H/d.
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significantly more isotropic6 than the forces associated with the piston effect; hence the decrease of
the friction-coefficient ratio for H/d < 1.3. For larger wall separations, more fluid leaks between the
particle and walls, which also results in a decrease of ζ⊥/ζ ||. The decrease is gradual: we find that
the elongated-piston effect is fairly strong for H/d = 3, and the enhanced transverse resistance is
still noticeable even for H/d = 10.

The above results suggest that the effectiveness of nematode swimming is strongly affected by
confinement. This conclusion is supported by explicit calculations presented in Sec. IV.

IV. EFFECTIVENESS OF LOCOMOTION FOR DIFFERENT CONFINEMENTS
AND NEMATODE GAITS

Figure 9 illustrates typical trajectories of a swimming nematode in unconfined (left) and confined
(right) fluid. In both cases the nematode uses the same sequence of body motions. Each panel shows
the path of the nematode tail and three snapshots of body postures separated by the same phase
difference. Consistent with the discussion in Sec. III C, the unconfined nematode experiences much
more backward slip with respect to the surrounding fluid than the confined one. Hence, the worm
is less efficient, i.e., it moves a shorter distance for the same sequence of body postures than the
confined nematode. Our numerical results closely resemble trajectories of swimming C. elegans
depicted in Fig. 1(a) of Ref. 23.

In order to quantify the effect of the hydrodynamic slip on the nematode motion, we define the
normalized swimming velocity

γS = VC

vs
, (10)

where VC denotes the average velocity of the worm and vs is the propagation velocity of the curvature
wave (1) along the nematode body.

Our results for the normalized velocity (10) for different swimming gaits of confined and
unconfined nematodes are presented in Figs. 10–13. The nematode gait is characterized by the
dimensionless amplitude A/q (which defines the shapes of the no-slip trajectories represented in
Fig. 3), and by the wavevector q normalized by the nematode length L.

Figures 10 and 11 show the swimming velocity γS vs. the normalized wavevector qL in un-
confined and confined systems, respectively, for several values of the dimensionless amplitude. The
insets in Fig. 10 show the nematode shapes corresponding to characteristic parameter values. Since

FIG. 9. Tail trajectories and snapshots of body positions at equally spaced times for a nematode swimming in unconfined
fluid (left) and in the midplane of a parallel-wall channel of normalized width H/d = 1.3 (right).
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FIG. 10. Normalized swimming velocity γS vs. wavevector q normalized by the worm length L for a nematode swimming
in an unconfined fluid. Normalized amplitude A/q is as labeled. Insets show nematode shapes for parameters corresponding
to the points indicated by filled circles.

the parameter ranges in Figs. 10 and 11 are the same, and the maximal efficiency occurs at a similar
value of the wavelength λ = 2π /q, the characteristic shapes shown in Fig. 10 also apply to the results
depicted in Fig. 11.

We find that the maximal normalized swimming velocity γS occurs for a similar amplitude but
a shorter wavelength λ = λmax than the wavelength of a typical C-shaped body posture of a nema-
tode swimming in water [as depicted in Fig. 1(c)]. The maximum of γS occurs for λmax/L ≈ 0.84,

FIG. 11. Normalized swimming velocity γS vs. wavevector q normalized by the worm length L for a nematode swimming
in a midplane of a parallel-wall channel of width (a) H/d = 3 and (b) H/d = 1.3. Normalized amplitude A/q is as labeled.
Results obtained by using the CR method are represented by solid lines and those by the HSD approximation are represented
by dashed lines.
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FIG. 12. Normalized swimming velocity γS vs. normalized amplitude A/q for a nematode swimming in unconfined fluid
(as labeled) and in the midplane of a parallel-wall channel for channel width as labeled. Results obtained by using the CR
method are represented by solid lines and those by the HSD approximation are represented by dashed lines. The normalized
wavevector qL corresponds to the maximal efficiency for the given geometry and amplitude. The dotted line represents
normalized velocity for a nematode crawling without slip.

whereas a typical C-shaped swimming body posture corresponds to λ/L ≈ 1.16. The wavelength at
the maximal velocity is similar to the wavelength of both the W -shaped crawling gait [cf. Fig. 1(a)]
and gait observed for C. elegans swimming in a high-viscosity fluid.24–26, 37 Approximate computa-
tions using the HSD method yield a slightly smaller wavelength value λmax/L ≈ 0.70.

For both unconfined and confined systems the normalized swimming velocity drops sharply for
small qL, because the worm body undergoes only slight deformations for λ/L � 1. The normalized
velocity also significantly decreases at short wavelength (large qL), because of finite thickness effects.
For confined worms, there is an additional contribution to this decrease, resulting from a smaller
transverse resistance for short coherently moving body segments (consistent with the elongated-
piston mechanism described in Sec. III C). The effects of finite thickness of the nematode’s body on
the swimming velocity are explored in more detail in Appendix A.

The dependence of γS on A/q is depicted in Fig. 12. For each value of A/q and channel width,
the wavevector qL corresponds to the maximal value of γS (cf. Figs. 10 and 11). Figure 12 also
shows the normalized velocity (10) for a worm crawling without sideways slip along the trajectories
defined by the Frenet–Serret equation (4). We note that even without slip, γS is smaller than unity,
because VC is the average velocity in the overall direction of motion, whereas vs is the velocity along
the curved nematode path.

Figures 10–13 show that confining a swimming worm in a parallel-wall channel significantly
affects the normalized swimming velocity. According to the results plotted in Fig. 13, the normalized
velocity γS is the largest for H/d ≈ 1.3. The peak of γS is relatively broad, and for an experimentally
relevant value H/d ≈ 3, the normalized velocity is only 25% smaller than the maximal value (and
twice as large as the corresponding result for unconfined fluid, cf. Fig. 12). We note that enhanced
swimming velocity has also been theoretically predicted for a cylindrical swimmer in a tube.51

The results shown in Figs. 11–13 have been obtained by using two complementary methods: the
highly accurate but numerically expensive CR method42, 43 and the HSD approximation (described
in Appendix B), which is much faster and easier to implement. While at large wavevectors and
high amplitudes of the undulations the HSD method overpredicts the swimming velocity, this
approximation yields good results for moderate values of qL and A/q that are relevant for swimming
nematodes.

V. HYDRODYNAMICS OF TURNS

Nematodes navigate their environment by performing a series of turns to move towards the
increasing concentration of a chemoattractant52 or in a direction of a favorable-temperature region.53
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FIG. 13. Normalized swimming velocity γS vs. normalized channel width H/d for a nematode swimming in the midplane of
a parallel-wall channel for normalized amplitudes A/q as labeled. Results obtained by using the CR method are represented by
solid lines and those by the HSD approximation are represented by dashed lines. The normalized wavevector qL corresponds
to the maximal efficiency for a given channel geometry and normalized amplitude.

In our recent paper36 we have shown that the nematode C. elegans turns by abruptly changing the
amplitude, wavevector, and phase of the PHC function (1). This behavior was thoroughly documented
for a crawling C. elegans, but our additional observations suggest that a similar turning mechanism
applies to swimming.

In this paper we consider three-mode turns, where the nematode initially moves using a mode
typical of forward locomotion, then increases the amplitude to the �-shaped mode [cf. Fig. 1(b)],
and finally returns to the initial forward-locomotion mode:

κ(s) =

⎧⎪⎨
⎪⎩

A1 cos(qs), s < s1

A2 cos(qs), s1 < s < s2

A1 cos(qs), s2 < s

. (11)

In our calculations, we use the normalized amplitude A1/q = 1 for the default (forward) mode and
A2/q = 1.8 for the turning mode. The normalized wavevector qL and phase φ during the turn remain
unchanged.

As illustrated in Fig. 14(a), the turning angle of a nematode crawling without slip depends
on purely geometrical factors: the lines corresponding to different modes (11) are smoothly joined
together, and the turning angle θ is obtained as a combination of the line slopes at the joining points.
Hence, evaluating the turning angle only requires explicit integration of Eq. (4) with respect to s, with
the curvature given by Eq. (11). The turning angle depends on the PHC mode parameters (including
the points s1 and s2 where the modes switch), but is independent of the normalized wavevector qL.

For a swimming nematode, the turning angle is affected by the rotational slip of the nematode
body with respect to the surrounding medium. The slip depends both on the normalized amplitude
A/q and the wavevector qL of the curvature wave defining the sequence of shapes assumed by the
nematode. The magnitude of the rotational slip also depends on the confinement. Hence, all of
the above factors influence the turning angle. The evolution of the worm shape is determined by
combining Eq. (11) with Eq. (3) relating the spatial variable s to time.

Turning maneuvers of unconfined and confined swimming nematodes are illustrated in Fig. 14,
for both W -shaped and C-shaped nematode gaits. As discussed in Sec. IV, the W -shaped nematode
body [Figs. 14(b) and 14(c)] corresponds, approximately, to the gait for which the normalized
swimming velocity γS assumes the maximal value. This shape is characteristic of nematodes crawling
and swimming in high-viscosity fluids. The C-shaped body [Figs. 14(d) and 14(e)] corresponds to
the gait observed for C. elegans swimming in water, as depicted in Fig. 1(c). The results shown
in Fig. 14 indicate that the same sequence of body postures that produces a turn for a nematode
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s1 s2

θ
(a) (b) (c) (d) (e)

FIG. 14. Nematodes performing turns in different geometries: (a) worm crawling without slip; (b) W -shaped worm swimming
in a parallel-wall channel; (c) W -shaped worm swimming in unconfined fluid; (d) C-shaped worm swimming in a parallel-
wall channel; (e) C-shaped worm swimming in unconfined fluid. Normalized channel width H/d = 1.3. The normalized
wavevector for the W -shaped worm is qL = 9 and for C-shaped worm is qL = 5.5. The turning angle and mode-switching
points s1 and s2 are marked in (a); dashed lines indicate the direction of motion.

crawling without slip yields a similar turn for a swimming nematode. However, the turning angle θ

is smaller, especially for the unconfined nematode.
Figure 15 shows the turning angle vs. the point of initial mode change s1 for two values of

the turning-mode length �s = s2 − s1 [with s1 = 0 corresponding to a point where κ(s) has a
maximum, according to Eq. (11)]. The dependence of θ on �s for two values of s1 is depicted in
Fig. 16. The results indicate that the choice of mode change parameters s1 and �s has a significant

FIG. 15. Angle of turn θ vs. the normalized point of amplitude change qs1 for the length of high-amplitude mode (a) q�s =
π /2 and (b) q�s = π . Crawling without slip is represented by dotted lines. Swimming in unconfined fluid is represented by
solid lines, and in parallel-wall channel of width H/d = 1.3 is represented by dashed lines; swimming results are presented
for C-shaped worms with qL = 5.5 (thin lines) and W -shaped worms with qL = 9 (heavy lines). The results for a confined
system are evaluated using HSD approximation.
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FIG. 16. Angle of turn θ vs. normalized length of high-amplitude mode q�s for (a) qs1 = 0 and (b) qs1 = π /2; lines are the
same as in Fig. 15.

effect on the turning angle, both in the sign and magnitude. Confined swimming worms consistently
perform sharper turns than their unconfined counterparts. The turning angles of worms employing
the C-shape and W -shape gaits are similar. We find that the differences between turning angles
determined by using the HSD approximation and CR method (not shown) are small, with typical
errors not exceeding 14% in the domain explored in our simulations.

The results in Fig. 16 are depicted for two periods of the normalized length of the turning mode
q�s. For a swimming nematode, the results in the domain �s < L are slightly different than in
the subsequent periods where �s > L, because in the first period the nematode can accommodate
all three (i.e., the initial, turning, and final) modes simultaneously along its body. Such three-mode
body postures do not occur for the subsequent periods of q�s.

Since the results shown in Fig. 16 indicate that the effect of the three-mode postures on the
turning angles is minimal, turning angles can be accurately estimated by combining results for
single-mode and two-mode trajectories. Such a simplified approach significantly reduces the size of
parameter space needed to fully characterize the turning maneuvers. In our future study of nematode
chemotaxis, this simplified method will increase the efficiency of numerical simulations.

VI. CONCLUSIONS

Combining our PHC description of the nematode gait36 and highly accurate hydrodynamic
models, we have quantitatively characterized locomotion capabilities of swimming submillimeter-
size nematodes. We have investigated the swimming velocity and turning maneuvers for locomotion
in unconfined fluid and in a fluid confined by two parallel walls. The swimming effectiveness was
characterized by the dimensionless swimming velocity γS (normalized by the velocity of curvature
wave propagating along the nematode body).
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We have determined the dependence of the normalized velocity γS on the wavevector q and
amplitude A of the curvature wave. It has been found that the velocity is maximal for the normalized
amplitude A/q ≈ 1, consistent with our earlier experimental study of the gait of a swimming
nematode.36 However, the wavelength λmax of the gait corresponding to the maximal velocity
is shorter than the experimentally observed wavelength for nematodes swimming in water. We
determined that the calculated wavelength is similar to the one characteristic of a nematode swimming
in a high-viscosity fluid.26 In a forthcoming publication, we will show that the choice of swimming
gait can be explained by using energy-dissipation considerations: the gait change stems from a
different wavelength dependence of the hydrodynamic energy dissipation in the external fluid and
the internal dissipation in the nematode body.

Our numerical simulations of nematodes swimming in a parallel-wall channel reveal that con-
finement can significantly enhance the swimming velocity. This behavior stems from the increased
transverse hydrodynamic resistance due to a large pressure drop across the nematode body moving
sideways in a narrow space. We find that for the confinement ratio H/d = 3 the normalized swimming
velocity γS exceeds by a factor of two the swimming velocity of an unconfined nematode. The effect
of the increased swimming velocity should be taken into account in interpretation of experimental
observations of nematode locomotion in parallel-plate cells.

The enhanced swimming velocity under strong confinement in a parallel-wall cell was, in
fact, observed in recent experiments.38 Our results provide the explanation of this phenomenon.
An increased locomotion efficiency was also seen for C. elegans moving in microfabricated pillar
environments.7, 54 However, in a pillar system C. elegans produces effective propulsion by pushing
against mechanical obstacles, whereas the effect described in our study is of purely hydrodynamic
origin.

The analysis of turning maneuvers shows that turns in swimming and turns in crawling can be
performed by using the same set of body postures. The turning angle is larger for a worm crawling
without slip, but the angles in swimming are sufficiently large for effective maneuverability. To our
knowledge, this study is the first systematic hydrodynamic investigation of turning maneuvers in
undulatory locomotion. Results of our hydrodynamic calculations of swimming speed and turning
angles have immediate applications in modeling chemotaxis of nematodes immersed in water,55

thermotaxis and electrotaxis. We are also using these results to study motor control of a swimming
C. elegans.
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APPENDIX A: ACTIVE BEAD-CHAIN MODEL

In our calculations, the body of the nematode is modeled as a long active chain of N touching
beads. The chain undergoes deformations that mimic undulatory motion of a swimming worm
(cf. Fig. 4). The overall translational and rotational motion of the chain results from the balance
of the hydrodynamic forces and torques acting on the beads. Chain kinematics is described in
Appendix A 1, and chain hydrodynamics is analyzed in Appendix A 2.

1. Chain kinematics

Consistent with the description of nematode kinematics introduced in Secs. II and III A (see
Fig. 2), the beads move along the line S defined by the Frenet–Serret equations (4) with the piecewise-
harmonic curvature (2). In the lab coordinate system O, the line S rotates and translates with the
linear and angular velocities urb and ωrb. Accordingly, the translational and rotational velocities of
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each bead,

ui = uA
i + urb

i , (A1a)

ωi = ωA
i + ωrb

i , (A1b)

have the active components uA
i and ωA

i associated with the forward motion along the line S, and
rigid-body components

urb
i = urb + ωrb × Ri , (A2a)

ωrb
i = ωrb, (A2b)

where Ri is the position of the bead i.
The active component of the linear velocity of bead i is given by the relation

uA
i = vs t̂i , (A3)

where t̂i is the unit vector tangent to the curve S at the position of bead i. Relation (A3) corresponds
to the active rod moving along the line S with velocity vs and is fully determined by the system
geometry. In contrast, the angular velocities of the beads

ωA
i = ωA

i êz (A4)

(where êz is the unit vector in the direction z normal to the plane of motion) are not uniquely
determined, except for a chain moving along a line with constant curvature κ(s) = κ0. In this case
the angular velocities of all beads are the same,

ωi = κ0vs, (A5)

because the chain moves along the circle as a rigid body. [For a force- and torque-free chain sub-
merged in a fluid the velocity component (A2) compensates for the imposed motion (A4) and (A5),
so a circular chain remains at rest.] To verify the accuracy of our approach, we examine three
internally consistent bead-rotation models for a flexible chain moving along a line with a varying
curvature κ(s). We find that at short wavelengths bead rotations have a large effect on the motion of
a chain, but the choice of a specific rotation model does not influence the results in a significant way.

a. Local-curvature model

In this model individual bead rotations are evaluated according to the local formula

ωA
i = κ(si )vs, (A6)

where si is the value of the coordinate s for bead i. The model (A6) satisfies the consistency condition
(A5), but it introduces a relative slip of particle surfaces.

b. Model with no interparticle slip

Bead angular velocities ωA
i are chosen in such a way that interparticle slip is not present.

Accordingly, it is assumed that the angular velocities of the beads satisfy the no-relative-slip condition

ωA
i + ωA

i+1 = 2νi,i+1, i = 1, 2, . . . , N − 1, (A7)

where ν i, i + 1 is the angular velocity of the vector connecting beads i and i + 1, which is computed
as

νi,i+1 = d ŝi,i+1

dt
·n̂i,i+1. (A8)

Here, ŝi,i+1 denotes the unit vector along the line connecting beads i and i + 1, and n̂i,i+1 is the unit
vector normal to ŝi,i+1. The system of equations (A7) is solved subject to the boundary condition

ωA
N = κ(sN )vs, (A9)

which ensures the consistency condition (A5).
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FIG. 17. Normalized swimming velocity γS vs. wavevector q normalized by the worm length L for a nematode swimming
in unconfined fluid. The local-curvature model is represented by the dashed–dotted line, the model with smoothed angular
velocity is represented by the dashed line, and the model with no interparticle slip is represented by the dotted line. Solid
lines represent resistive force theory and no rotation model as labeled.

c. Model with smoothed angular velocity

This approach aims to more accurately mimic the motion of deformable interface of the nema-
tode for a system with a strongly nonlinear variation of the curvature. To smooth out the effect of
rapid curvature variation, the angular velocity of bead i is given as the average rate of rotation of the
directors ŝi−1,i and ŝi,i+1. Accordingly, the bead angular velocities are given by

ωA
i = 1

2 (νi−1,i + νi,i+1), i = 2, 3, . . . , N − 1. (A10)

The angular velocities of the first and last beads are

ωA
1 = ν1,2, ωA

N = νN−1,N . (A11)

The effect of bead rotation on the swimming speed of an active rod is illustrated in Fig. 17. By
comparing the results that include consistent bead-rotation models with a calculation that neglects
bead rotations entirely, we find that the angular velocities of the beads have a significant effect on
the chain velocity. However, if the bead rotations are properly implemented, discrepancies between
various rotation models are small, with appreciable differences occurring only in the regime where
the wavevector normalized by the bead diameter is too large, qd � O(1). In this regime noticeable
differences are expected even for a continuous elongated body, because deformation details are not
uniquely determined by the curvature of the centerline alone.

In Fig. 17, the results of the bead-chain model are also compared to the normalized swimming
velocity γS evaluated using the RFT with the resistance-coefficient ratio ζ⊥/ζ || = 1.45 (corresponding
to a coherently moving 15-bead chain segment). The results indicate that RFT does not capture the
decrease of the swimming velocity at short waves, and therefore significantly overpredicts the
normalized swimming velocity in this regime.

2. Hydrodynamic interactions

Under creeping-flow conditions, the hydrodynamic force and torque acting on bead i in a chain
moving through a viscous fluid are related to linear and angular bead velocities via the N-particle
friction relation [

Fi

Ti

]
=

N∑
j=1

[
ζ̂ t t

i j ζ̂ tr
i j

ζ̂ r t
i j ζ̂ rr

i j

]
·
[

u j

ω j

]
, (A12)

where ζ
αβ

i j (α, β = t, r) are the translational (t) and rotational (r) hydrodynamic resistance coefficients.
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The total force acting on the chain is equal to the sum of the forces on individual beads:

F =
N∑

i=1

Fi . (A13)

The total torque

T =
N∑

i=1

(Ti + Ri × Fi ) (A14)

includes the sum of individual bead torques Ti as well as the torque due to the forces acting on
the beads. Taking into account the velocity decomposition (A1), the total force and torque can be
represented as a superposition of the active and hydrodynamic-resistance components,[

F

T

]
=

[
FA

TA

]
+

[
FR

TR

]
, (A15)

where [
FA

TA

]
=

[
ζ ta

ζ ra

]
vs (A16)

and [
FR

TR

]
=

[
ζ̂ t t ζ̂ tr

ζ̂ r t ζ̂ rr

]
·
[

urb

ωrb

]
. (A17)

Combining expressions (A12)–(A14) with the bead rotation models of Appendix A 1, we find the
active-force matrix [

ζ ta

ζ ra

]
=

N∑
i, j=1

[
Î 0

�̂i Î

]
·
[

ζ̂ t t
i j ζ̂ tr

i j

ζ̂ r t
i j ζ̂ rr

i j

]
·
[

ūA
j

ω̄A
j

]
(A18)

(where ūA
j = uA

j /vs and ω̄A
j = ωA

j /vs are the normalized active linear and angular velocities of the
particles), and the chain-resistance hydrodynamic matrix[

ζ̂ t t ζ̂ tr

ζ̂ r t ζ̂ rr

]
=

N∑
i, j=1

[
Î 0

�̂i Î

]
·
[

ζ̂ t t
i j ζ̂ tr

i j

ζ̂ r t
i j ζ̂ rr

i j

]
·
[

Î �̂
†
j

0 Î

]
. (A19)

In the above equations, Î is the identity tensor, the dagger denotes the transpose, and we use the
cross-product operator notation

�̂i ·A = Ri × A, (A20)

where A is an arbitrary vector. Equations (A18) and (A19) provide a link between the active bead-
chain model and the hydrodynamic description of nematode locomotion given in Eqs. (6)–(9).

For a bead chain moving in an unconfined space, the multiparticle hydrodynamic resistance
matrix ζ

αβ

i j is evaluated using the HYDROMULTIPOLE method.41 For a parallel-wall geometry we
use the CR method.42, 43 In both cases, the lubrication resistance for touching neighboring beads
is truncated at a finite gap width ε0 between particle surfaces. This truncation allows us to avoid
infinite internal friction in the chain. The active force and resistance coefficients (A16) and (A19) are
non-singular in the limit ε0 → 0. We find that the numerical results for chain motion are insensitive
to the value of ε0 for ε0 � 1.

Evaluation of the hydrodynamic-interaction tensors by using the CR method is very accurate
but numerically expensive. Thus, we have also developed a less accurate but much faster Hele–
Shaw dipole approximation, described in Appendix B. A comparison of HSD results with the CR
method, presented in Fig. 11, shows that the HSD approximation provides accurate description of
the hydrodynamics of active bead chains at sufficiently long wavelengths.
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APPENDIX B: HELE–SHAW DIPOLE APPROXIMATION

1. Interparticle dipolar interactions

An isolated spherical particle i in the midplane of a parallel-wall channel, moving with the
velocity ui and subject to the external pressure gradient ∇ pext, experiences the hydrodynamic
traction force Fi and produces the far-field scattered parabolic flow driven by a two-dimensional
pressure dipole,43, 56–59

p′(ρ ′
i ) = Di · ρ ′

i

ρ ′
i
2 . (B1)

Here, ρ ′
i = ρ − ρi is the lateral position of the field point ρ = x êx + yêy relative to the lateral

particle position ρi = Xi êx + Yi êy , ρ = |ρ|, and Di is the dipolar moment of the induced pressure
dipole. The hydrodynamic traction force and dipolar moment are linearly related to the particle
velocity ui and the external pressure gradient at the particle position,

∇ pext
i ≡ ∇ pext(ρi ) (B2)

(where it is assumed that pext depends only on the lateral coordinates). As discussed in Ref. 58, the
force and dipolar moment can be expressed by the generalized resistance relation[

Fi

Di

]
=

[
ζ t t

0 ζ
tp
0

ζ
pt

0 ζ
pp

0

]
·
[

ui

∇ pext
i

]
, (B3)

where the scalar resistance coefficients ζ
αβ

0 depend on the confinement ratio H/d.
In the HSD approximation, it is assumed that the particles interact solely via the Hele–Shaw

dipolar fields (B1). It follows that the flow incident to particle i is driven by the pressure gradient

∇ pext
i = ∇

N∑
j 
=i

p′(ρ ′
j ) (B4)

resulting from the superposition of dipolar pressures (B1) produced by other particles. By combining
Eqs. (B3) and (B4), we obtain the relations

Fi = ζ t t
0 ui + ζ

tp
0 η−1

N∑
j 
=i

ĝi j ·D j , (B5a)

Di = ζ
pt

0 ui + ζ
pp

0 η−1
N∑

j 
=i

ĝi j ·D j , (B5b)

where

ĝi j = Î − 2ρi jρi j

ρ2
i j

(B6)

is the dipolar-interaction tensor obtained by taking the gradient of Eq. (B1).
Eliminating the dipole moment Di from equations (B5) yields the N-particle friction relation

Fi =
N∑

i, j=1

ζ̂ HSD
i j ·u j (B7)

in the HSD approximation. The hydrodynamic resistance tensor ζ̂ HSD
i j can be expressed using the

N-particle matrix relation

ζ̂ HSD = ζ t t
0 Î + η−1ζ

tp
0 ζ

pt
0

[
Î − η−1ζ

pp
0 ĝ

]−1
, (B8)

where ζ̂ HSD and ĝ are N × N matrices with elements ζ̂ HSD
i j and ĝi j (i, j = 1, . . . , N), and Î is the

identity matrix in the N-particle space.
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FIG. 18. A comparison of the HSD approximation (solid lines) with accurate results obtained using the CR method (dashed
lines) for the transverse and longitudinal resistance coefficients of linear chains of touching spheres in the midplane of a
parallel-wall channel. The (a) transverse and (b) longitudinal resistance coefficients per particle (normalized by the one-
particle value) and (c) the resistance-coefficient ratio are shown vs. the chain length N for the normalized channel width H/d,
as labeled.

In the HSD approximation, the dynamics of the active chain is described by the active-force
and chain-resistance relations (A18) and (A19) with

ζ̂ t t
i j = ζ̂ HSD

i j (B9a)

for the translational components of the N-particle hydrodynamic resistance matrix, and

ζ̂ tr
i j = ζ̂ r t

i j = ζ̂ rr
i j = 0 (B9b)

for the components that involve particle rotation. The rotational components (B9b) are neglected in
the HSD approximation, because particle rotation in the midplane of the channel does not produce
far-field dipolar scattered flow.58 However, we expect that incorporating short-range rotational effects
in future implementations of the HSD method may improve its accuracy at short wavelengths.
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TABLE I. Coefficients ζ t t
0 , ζ

pp
0 , and ζ

tp
0 ζ

pt
0 of the Hele–Shaw dipole approximation (B8) for active chains of touching

spheres, for different values of dimensionless channel width.

H/d ζ t t
0 ζ

tp
0 ζ

pt
0 ζ

pp
0

1.01 0.85223 0.05176 0.15010
1.02 0.82923 0.05748 0.15001
1.03 0.80829 0.06030 0.15032
1.04 0.79819 0.06347 0.15003
1.05 0.78857 0.06559 0.14990
1.06 0.78352 0.06726 0.14976
1.07 0.78188 0.06910 0.14945
1.08 0.76290 0.06866 0.14994
1.09 0.76152 0.07058 0.14948
1.1 0.75416 0.07068 0.14960
1.2 0.70692 0739421 0.14838
1.3 0.67887 0.07304 0.14705
1.4 0.65012 0.07020 0.14570
1.5 0.64069 0.06973 0.14323
2.0 0.56027 0.05441 0.13770
2.5 0.52446 0.04719 0.13036
3.0 0.48439 0.03928 0.12826

2. Application to a system of touching spheres

According to Eq. (B8), the HSD approximation involves three independent numerical coef-
ficients, i.e., ζ t t

0 , ζ
pp

0 , and the product ζ
tp
0 ζ

pt
0 , which describe the single-particle hydrodynamic

response (B3) of a particle to its translational motion and to the applied pressure gradient. When the
values corresponding to the dynamics of an isolated particle are used for these coefficients, an asymp-
totic approximation for a system of widely separated particles is obtained. Such an approximation,
however, is inaccurate if the interparticle distance is comparable to the channel width.60

In the present study, the HSD approximation is applied outside the far-field asymptotic regime.
Therefore, we use an alternative approach, where we treat the coefficients ζ t t

0 , ζ
pt

0 , and ζ
tp
0 ζ

pt
0 as

adjustable parameters. The values of these parameters are determined by fitting the HSD results to
accurate CR calculations for the resistance coefficients of rigid linear chains of touching spheres.
The same values are then used in our simulations of the motion of active particle chains.

For a given normalized channel width H/d, the optimal parameter values are determined by
minimizing the fitting error

f =
Nmax∑

i=Nmin

{
α

[
ζ CR
|| (i) − ζ HSD

|| (i)
]2 + [

ζ CR
⊥ (i) − ζ HSD

⊥ (i)
]2

}1/2
, (B10)

where ζ || and ζ⊥ are the lateral and transverse resistance coefficients of chains of different lengths i.
The indices CR and HSD refer to the results obtained by using the CR algorithm42, 43 and the HSD
approximation (B8), respectively.

In our calculations, we have used the summation range from Nmin = 3H/d to Nmax = 30 and the
value α = 4 for the weight of the lateral resistance component relative to the transverse component.
The lower summation limit Nmin corresponds to the chain length below which the HSD approximation
is not expected to hold, based on the decay distance of the near-field contributions.57, 60 The upper
limit Nmax is the chain length used in our simulations of nematode locomotion. The fitting error
(B10) was minimized by using the conjugate-gradient method.

The results of our calculations are illustrated in Fig. 18, where we compare the HSD approxi-
mation with accurate results obtained using the CR method. For sufficiently large chain lengths N,
the HSD approximation agrees well with the accurate calculations, especially for narrow channels.
The error for the resistance-coefficient ratio ζ⊥/ζ || is small in the whole range of chain lengths N,
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as depicted in Fig. 18(c). The optimal values for the coefficients ζ t t
0 , ζ

pp
0 , and the product ζ

tp
0 ζ

pt
0 for

different channel widths are listed in Table I.
The above fitting procedure optimizes the accuracy of the resistance coefficients for linear

chains of spheres. Since the motion of deformable active chains is determined by hydrodynamic
interactions of coherently moving chain segments, the HSD approximation yields accurate results
for active chains at sufficiently long wavelengths.
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