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screening and enumeration of tumor cells in
blood†

Dhananjay Kumar Singh, ‡ Caroline C. Ahrens, ‡ Wei Li and Siva A. Vanapalli *

We introduce inline digital holographic microscopy (in-line DHM) as a label-free technique for detecting

tumor cells in blood. The optimized DHM platform fingerprints every cell flowing through a microchannel

at 10000 cells per second, based on three features – size, maximum intensity and mean intensity. To iden-

tify tumor cells in a background of blood cells, we developed robust gating criteria using machine-learning

approaches. We established classifiers from the features extracted from 100000-cell training sets

consisting of red blood cells, peripheral blood mononuclear cells and tumor cell lines. The optimized clas-

sifier was then applied to targeted features of a single cell in a mixed cell population to make quantitative

cell-type predictions. We tested our classification system with tumor cells spiked at different levels into a

background of lysed blood that contained predominantly peripheral blood mononuclear cells. Results show

that our holographic screening method can readily detect as few as 10 tumor cells per mL, and can identify

tumor cells at a false positive rate of at most 0.001%. This purely optical approach obviates the need for

antibody labeling and allows large volumes of sample to be quickly processed. Moreover, our in-line DHM

approach can be combined with existing circulation tumor cell enrichment strategies, making it a promis-

ing tool for label-free analysis of liquid-biopsy samples.

1. Introduction

Circulating tumor cells (CTCs) have been identified in the
blood of cancer patients as those cells that have left primary or
even metastatic tumors and entered into peripheral blood. As
part of so-called liquid biopsies,1 identifying the presence and
assessing the character of CTCs has shown great utility for im-
proving patient care including enabling early cancer detection,
determining patient prognosis, and directing longitudinal
treatments.2–4 Clinical success has motivated the development
of a variety of technologies to identify, isolate, and characterize
the extremely rare subpopulation of CTCs in patient blood (ap-
proximately 1–10 CTCs in 1 billion blood cells).5

Established methods for CTC characterization largely rely
on differences in biochemical and physical properties be-
tween CTCs and blood cells to recover a population enriched
in CTCs.5 Biochemical techniques typically involve the selec-
tive arrest of tumor cells through surface binding of proteins
preferentially expressed on the tumor cell surface.5 In physi-
cal separation approaches, the larger average size of tumor
cells compared to blood cells and their distinct viscoelastic

properties6 allow for CTC isolation using various filtration
and inertial separation techniques.3 Following CTC enrich-
ment, additional characterization, most often via immunoflu-
orescence, is used to identify CTCs among contaminating
blood cells.5 This subsequent processing is necessary to allow
accurate CTC enumeration and is useful in identifying and
isolating a pure CTC population appropriate for genomic,
proteomic, or phenotypic assays.5,7

As the field of CTC isolation and characterization continues
to develop, traditional techniques involving selective enrich-
ment followed by label-based CTC identification have become
increasingly limiting. Labeling molecules including antibodies
used in immunofluorescent stainingmust be validated for each
population with varied resolution dependent on label selec-
tion.8 Further, while select immunofluorescence detection
strategies preserve cell viability,9 fixation and permeabilization
remain standard for antibody-based characterization.7,10 This
destructive processing improves cell retention and stability but
eliminates the potential for subsequent phenotypic assays. A
more optimal characterization technique would be label free,
high-throughput and platform flexible.11 Most importantly, the
approach should be non-destructive, allowing the recovery of
both viable tumor cells and even tumor cell clusters12 for fur-
ther downstream processing. Such a technique might be inte-
grated into existing CTC isolation strategies or serve as a stand-
alonemethod for CTC detection.
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Several cell characterization technologies have begun to
meet these demands for alternative detection. Most com-
mon are inertial methods introduced above in which cells
are flowed through highly structured microfluidic chips.
Differences in size and deformability between tumor cells
and blood cells in flow are used to isolate a cell population
enriched in CTCs.13 However, the overlapping physical
properties of the cell types limit recovered cell purity, re-
quiring secondary processing.7,10,14 Proof-of-concept studies
identified CTCs in a single metastatic prostate cancer pa-
tient based on cell passage time through a constriction and
buoyant mass, however this developing approach has lim-
ited throughput (∼45 μL h−1) and imperfect resolution,
detecting spiked cells with a true positive rate of less than
0.7 even with stringent gating.15 Label-free Raman spectro-
scopy is an optical technique used to differentiate tumor
cells from blood cells based on inherent differences in
amino acid and lipid compositions in the two cell
populations,16 but the label-free technique has limited
throughput with demonstrated characterization of less than
500 cells. Other strategies include so-called
dielectrophoresis17 and acoustophoresis,18 in which electri-
cal and acoustic forces, respectively, have been integrated
into microfluidic devices to direct label-free cell separation.
These separations are broadly based on a variety of factors
including difference in cell size, density, mass, compress-
ibility, shape, and, in the case of dielectrophoresis, electri-
cal properties, but both methods have limited throughput
and purity.

Here we introduce inline digital holography microscopy
(inline-DHM) as a promising optical, label-free technique for
tumor cell identification in mixed samples. In DHM, the
interference pattern (hologram) in an image contains infor-
mation not only about the cells that are in focus but also
cells that are out-of-focus.19–27 Using diffraction theories, nu-
merical reconstruction is pursued to obtain the in-focus im-
age of every cell in the 3D volume. Because mechanical scan-
ning across sample depth is not needed, holograms can be
acquired at much faster rates using high-speed cameras,
making the method suitable for large-scale single cell
phenotyping. We recently optimized the in-line DHM set up
and demonstrated the label-free fingerprinting of thousands
of tumor cells in bulk flow.28

Building on these capabilities of DHM, the main chal-
lenge we seek to address here is how to identify rare cancer
cells that are present in a mixed population of other cells.
We exploit both the size and optical characteristics of differ-
ent cell types to enumerate tumor cells spiked in blood.
Training sets of red blood cells (RBCs), peripheral blood
mononuclear cells (PBMCs) and tumor cell lines are used to
establish rigorous single- and multi- dimensional gating
strategies for cell identification with a focus on limiting
false positives. These optimized selection criteria are applied
to identify tumor cells spiked into lysed whole blood based
on key physical differences between the blood and tumor
cell types.

2. Results
2.1 Basic principle of inline-DHM for characterizing cells in
bulk flow

This section presents the basic principles of recording
and reconstruction of optical signatures from cells in bulk
flow using inline-DHM. Fig. 1A shows the experimental ar-
rangement of inline-DHM. In brief, the sample volume
containing flowing cells in a transparent microchannel is
illuminated by a collimated beam of laser light. The for-
ward scattered light from cells and un-scattered light
interfere and generate a 2D hologram. The interference
pattern is magnified by a microscope objective and im-
aged onto a CCD sensor. Fig. 1B shows a portion of holo-
gram from MCF7 cells flowing in a rectangular PDMS
channel.

The numerical reconstruction of the 2D hologram pro-
vides the focused images of cells in the full volume. The
size and intensity distributions of the focused image can
be obtained numerically. The intensity distribution across
the focused image manifests the recorded intensity in the
form of a hologram. Fig. 1C shows the plane-wise 3D nu-
merical reconstruction carried out in the full sample vol-
ume from the 2D digital hologram shown in Fig. 1B. The
reconstruction is performed using the angular spectrum
method29–31 where the gradient of intensity32 of the cell im-
age along z-direction inside the reconstruction volume indi-
cates the plane of best focus of each cell image. The fo-
cused image provides the size and intensity distributions.
Fig. 1D shows a representative focused image of a single
MCF7 cell and Fig. 1E shows the intensity distribution
along the line passing through the center of this image.
Detailed reconstruction methodology for characterization of
particles20,21,23–25,33–36 and of cells including how we elimi-
nate multiple counting of cells from successive images is
described in our previous work.28

From the focused image we extract three metrics quan-
tifying the cell size and image intensity. As established in
our previous work, the size of the bead or cell is deter-
mined using the lateral intensity profile along the line
passing through the center of the focused image. The dis-
tance between two minima about the central maxima pro-
vides the diameter of the bead or cell. Importantly, as
shown in Fig. 1E, two optical metrics Imax and Imean fur-
ther characterize the cell. Here Imax is the intensity of the
single brightest pixel (2 × 2 μm2) within a given cell im-
age, and Imean is the average intensity of the 6 × 6 μm2

region centered around the most intense pixel. We note
that we have mapped the size and pixel values of maxi-
mum and mean intensity of focused images of cells on a
single plane perpendicular to the direction of light i.e.
the lateral component of D and I. We have chosen this
plane for analysis, because in the longitudinal plane the
image of cell is elliptical due to the diffraction limited
digital holographic imaging, which might lead to larger
errors.
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2.2 Establishing size and optical signatures for single cell
characterization

Label-free, high throughput tumor cell enumeration via
inline-DHM relies on precise and accurate characterization of
the size and optical properties of cells flowing through the
chosen geometry. In this section, we characterize beads of

known character flowing through a straight rectangular
PDMS channel to systematically establish the accuracy and
precision of inline-DHM recorded particle size and optical
properties. We chose cell-sized beads having varied refractive
indexes to establish three distinct metrics, size (D) and maxi-
mum (Imax) and mean (Imean) intensities. Finally, we explore
the interdependence of these metrics and suggest their

Fig. 1 Principle of inline digital holography microscopy (DHM) for characterizing cells in flow. (A) Shows the experimental arrangement of inline-
DHM for recording holograms of cells in bulk flow and the experimental parameters used in this study. Here MO: microscope objective, PH: pin-
hole, CL: collimating lens, (B) shows the hologram cropped from the original hologram of MCF7 cells, (C) shows the three-dimensional numerical
reconstruction to generate the focused image of cells in the 3D volume, a 2D in-focus image corresponding to the hologram pattern encircled in
(B) and the z-location of the focussed image shown by the profile of the gradient of intensity along the z-direction, (D) shows a representative in-
focus image of a single MCF7 cell, (E) shows the intensity profile along a line passing through the centre of the in-focus image on the xy-plane,
and (F) is a heat map of (D). The maximum intensity (Imax) corresponding to the single brightest pixel is indicated with an arrow and the perimeter
of the region of mean intensity (Imean) corresponding to 6 × 6 μm2 is indicated by a dashed area.
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additive utility when characterizing both beads and cells.
We note that we have limited the overall influence of bead or
cell overlap by selecting a seeding density such that the
shadow density is less than 5% so that the beads or cells
are sparse enough not to overlap significantly on the
hologram.33–35,37

We first quantify bead diameters, confirming the accuracy
and precision of high throughput inline-DHM based imaging
of particles in a 1 mm × 350 μm rectangular PDMS channel.
The channel width of 1 mm was chosen as it was the maxi-
mum we could accommodate with our camera sensor and
the 10× microscope objective magnification that was suffi-
cient to resolve the size of cells. The height of 350 um was
dictated by the constraints of soft lithography used to make
the channel and the optimal DHM recording z-distance
needed to minimize the error in determining the axial posi-
tion of beads or cells in the image volume.28,33–35,37

The manufacturer and DHM data for cell-sized (nominal
8 and 15 μm) polystyrene (PS) and silica (SILICA) beads were
compared. Bead average diameters and variances of all four
bead types, as quantified by DHM, closely match those
reported by the manufacturer (Table 1). Further we observed
no statistically significant positional variance in diameter
measurements (data not shown) confirming our previously
published work which established both accurate and precise
particle size measurements throughout this depth of flow.28

We next introduce the two optical metrics, Imax and Imean

and explore their dependencies on both bead size and inher-
ent optical properties. In the present study, the holograms
are generated using the forward scattered light from the
beads or cells. A study characterizing beads suspended in
water found that S = 0.15D3 and 0.29D3.3 for beads having re-
fractive indices 1.59 and 1.40 respectively, where S is the for-
ward scattering intensity collected within a 2° angle and D is
the diameter of the beads.38 Thus, the forward scattered light
predominantly depends on the size of the beads and in-
creases with the increase in bead diameter and decreases
with the increase in the bead refractive index. These previous
findings support that the forward scattered light contains the
information of size and refractive index of a particle but, pre-
dominantly, depends on the particle size.

Experimentally observed values of Imax and Imean for the four
bead populations generally follow expected trends (Table 1).
Considering first Imax, the average recorded intensities for the
four bead types range from 0.86 to 4.68 (Table 1). We find Imax

is higher for beads having the same diameter but lower refrac-

tive index, and is higher for larger beads with the same refrac-
tive index (Table 1). The second intensity metric, Imean, follows
similar dependencies on bead size and refractive index as does
Imax. However, for all bead populations the average values and
coefficients of variance (CV) of Imean are less than those of Imax

as Imean is calculated from the average intensities of the Imax

pixel and the surrounding eight pixels.
The observed close correlation between the two optical sig-

natures, Imax and Imean is expected for homogeneous particles
having uniform refractive indexes. However, unlike beads,
cells have greater internal complexities and local variations
of optical properties. For example, in live HeLa cells, an ovar-
ian cancer cell line, the refractive indices of the nucleus, nu-
cleolus and cytosol have been measured using tomographic
phase imaging to be 1.355–1.365 RIU, 1.375–1.385 RIU, and
1.36–1.39 RIU, respectively.39 Considering applications fo-
cused on identifying tumor cells in blood, it is useful to also
consider those of lymphocytes and monocytes, two
populations of white blood cells. Based on light scattering
and multiple-layer spherical models lymphocytes were found
to have a nuclear and cytoplasmic refractive index of 1.43 ±
0.05 RIU and 1.356 ± 0.009 RIU, respectively; whereas mono-
cytes were found to have a nuclear and cytoplasmic refractive
index of 1.43 ± 0.04 RIU and 1.348 ± 0.004 RIU, respectively.40

The above analysis indicates that for same size of cells their
internal complexities may differ from each other which in
turn may affect the scattered light from cells. For tumor and
white blood cells, Imax represents the maximum intensity cor-
responding to the single bright pixel at the core of a focused
image hence is primarily affected by the size of the cell due
to forward scattering; whereas Imean, a 3 × 3 pixel2 region of
the focused image, is expected to be influenced by the optical
properties of a region extending throughout both the nucleus
and regions of the cytoplasm.

To further explore the dependencies in cells among the
three metrics, D, Imax, and Imean, 100 000 cells from each of
the three cell populations were characterized. Specifically, we
characterized PBMCs isolated from donor blood through red
blood cell lysis and two breast cancer cell lines (MDA-MB-231
and MCF7). Scatter plots suggest a strong relationship be-
tween Imean and Imax with a covariance quantified as 0.46,
0.87, and 0.79 for PBMC, MDA-MB-213 and MCF7 cells, re-
spectively (Fig. 2A–C). That these correlation coefficients are
not closer to 1 support the non-redundant nature of these
two intensity metrics in characterizing cells. Further, the cor-
relation coefficients between D and Imax (Fig. 2D–F) as well as

Table 1 The distribution [μ ± CV(%)] of diameter (D), maximum intensity (Imax), and mean intensity (Imean), of polystyrene (PS) and silica (SILICA) beads
obtained from inline-DHM. The data was generated from atleast 100000 particles for each bead type

Bead type

Manufacturer data DHM data

D RI D Imax Imean

Polystyrene 8.23 μm ± 6% 1.59 8.32 μm ± 9% 0.86 ± 25% 0.37 ± 20%
SILICA 8.32 μm ± 6% 1.4 8.39 μm ± 9% 1.68 ± 25% 0.47 ± 20%
Polystyrene 15.13 μm ± 6% 1.59 15.14 μm ± 3% 2.41 ± 32% 0.49 ± 24%
SILICA 15.14 μm ± 3% 1.4 15.32 μm ± 4% 4.68 ± 32% 0.91 ± 24%
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D and Imean (Fig. 2G–I) are less than 0.5 for all cell three cell
populations and is not increased when comparing with D3,
further supporting that our optical signatures are not exclu-
sively dictated by cell size.

In summary, inline-DHM characterization in bulk flow of
beads having known sizes and optical properties supports
the three metrics, size (D), maximum intensity (Imax) and
mean intensity (Imean), as robust measures for use in cell dis-
crimination and classification. Further, our results establish
the practical utility of the two metrics of scattered intensity,
Imax and Imean, as complementary to and non-redundant with
size-based inline-DHM cell characterization.

2.3 Establishing optimized classifiers for identifying targeted
cells

This work focuses on method development that might be
readily extended to detecting tumor cells in patient blood.
Here, MDA-MB-231 and MCF7 breast cancer cell lines act as

models for patient-derived CTCs. Like CTCs, these cell lines
have similarly increased average sizes and refractive indices
compared to blood-derived cells.41,42 Although we anticipate
applications using inline-DHM to quantify tumor-like cells in
patient whole blood, this work focuses on identifying tumor
cells among the PBMC sub-fraction of healthy donor blood. A
background of the red blood cell lysis derived PBMC sub-
population was chosen for preliminary experiments rather
than whole blood to allow rapid development of metrics dif-
ferentiating tumor cells from normal blood while minimizing
computational processing required to characterize large num-
bers of readily differentiated red blood cells.

Fig. 3 shows the workflow that we used, which is well
established within the field of machine learning to develop
classifiers from features extracted from the simplified train-
ing sets. We used single populations of blood cells including
RBCs and PBMCs isolated from donor blood through red
blood cell lysis as well as of two breast cancer cell lines
(MDA-MB-231 and MCF7) as training sets. Optimized

Fig. 2 Binary correlations between the three metrics of size (D), maximum (Imax) and mean (Imean) intensity for PBMCs (A, D, and G) and two
cancer cell lines, MDA-MB-231 (B, E, and H) and MCF-7 (C, F, and I). Cell types and the correlation coefficient (r) between the metrics are shown
as an inset. The number of cells analyzed to generate each plot is 100000. Scale bar shows the normalized density distribution.
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classifiers were then applied to identify cancer cell lines
within a background of blood cells.

2.3.1 Training sets using single cell types: characteristic
features. We extracted the characteristic features of cells from
the numerical reconstruction of digital holograms of single
populations of blood cells including RBCs, PBMCs and the
two cancer cell lines (MDA-MB-231 and MCF7). For each sub-
population, the three metrics: D, Imax and Imean were recorded
from 100 000 flowing cells. The average diameters of the cell
populations closely follow expected values (Fig. 4A). Litera-
ture suggests that the mean diameter across the long axis of
disk-like red blood cells is around 8 μm compared to the
DHM-recorded average diameter of 7.6 μm. Of note, the 10×
magnification employed here generates a 3 to 4 pixel
reconstructed image for each RBC making the optical resolu-
tion and intensity based characterization insufficient to re-
solve the asymmetric character of RBCs as the size of each
pixel is 2 × 2 μm2. The mean size of PBMCs is reported to be
around 14 μm (ref. 43) closely matching the recorded cell di-
ameter of 14.12 μm. Similarly, reported tumor cell diameters
fall between 15 and 20 μm (ref. 44) compared to recorded av-
erage diameters of 16.61 μm and 17.87 μm for MDA-MB-231
and MCF7 cells, respectively.

As established in the previous section, intensity metrics
are expected to incorporate aspects of both the cell size and
optical properties. Comparing the average value mean (Imean)

and maximum (Imax) intensities indicates the strong correla-
tion of cell size with observed intensities. Broadly, the rank
order of cell types by increasing diameter mirrors that by
both Imax and Imean (Fig. 4).

Finally, comparing the overall probability densities with
respect to diameter, Imean and Imax from pure population of
RBCs, PBMCs, MDA-MB-231 and MCF7 supports red blood
cells having much smaller average diameters might be readily
distinguished from PBMCs and both cancer cell lines. How-
ever, it is clear from Fig. 4 that, as would also be expected for
patient derived samples, the individual intensity and diame-
ter distributions of the PBMCs and tumor cells are not dis-
crete. The overlapping individual metrics demand further op-
timization of classification strategies, including those
incorporating intensity metrics, to achieve robust cell
identification.

2.3.2 Developing classifier. The training sets of known cell
populations can be used to train classifiers able to identify
cells within mixed populations. Each classification strategy
balances the tolerance for false positives, the tolerance for
false negatives, and computational simplicity where the opti-
mal process is dependent on the end application. For exam-
ple, screening for CTCs in dilute blood might require an ex-
tremely low tolerance for false positives (i.e. blood cells
identified as tumor cells) as the great excess of blood cells
compared to tumor cells would lead both healthy and normal

Fig. 3 Data analysis workflow to develop classifier and detection of tumor cells.

Fig. 4 Characteristic features of pure populations of different cell types. Probability density with respect to (A) diameter, D, (B) maximum intensity,
Imax, and (C) mean intensity, Imean, of different types of pure cellular populations. The data was generated from atleast 100000 cells of RBCs,
PBMCs, MDA-MB-231 cells, and MCF7 cells.
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patients to have a large number of cells classified as tumor
cells. Screening on subpopulations enriched in CTCs might
favor classification strategies with limited false negatives. In
all cases, incorporating multiplexed metrics has the potential
to increase overall accuracy, but also risks overfitting the sys-
tem and unnecessarily complicating downstream processing.

We first quantify the capabilities of the simple classifica-
tion strategy, binary classifiers, for differentiating targeted tu-
mors cells among a background of PBMCs. To visualize the
classification accuracy, we use a receiver operating character-
istic (ROC) curve which is generated by plotting the true posi-
tive rate (TPR) and false positive rate (FPR) at various thresh-
old settings. Fig. 5A and B show the ROC curve visually
demonstrating the accuracy of each of the three metrics, D,
Imax, and Imean in differentiating PBMCs from each of the
cancer cell lines (MDA-MB-231 and MCF7). Fig. 5C and D are
zoomed in presentations corresponding to Fig. 5A and B re-
spectively for visual clarity. From these figures, it is clear that
the area under the curve (AUC) is more than 0.9 for all three
characteristic curves of D, Imax, and Imean for both the
populations PBMC & MDA-MB-231 and PBMC & MCF7. This
indicates that while diameter is the most robust independent
discriminating metric, all three metrics can be used as strong

classifiers to identify tumor cells in a lysed blood population
of PBMCs with a high TPR and with a very low FPR.

Applications requiring more resolved separations are
expected to benefit from more developed gating strategies
integrating multiple classifiers. Fig. 6 shows one such ap-
proach, the decision tree based on the CART-algorithm, to
develop a classifier from the pure subpopulations of PBMC &
MDA-MB-231 (Fig. 6A) and PBMC & MCF7 (Fig. 6C), respec-
tively. The maximum split limit has been set as 6 for both
cases. At every branching point of the tree, the twoing
method is used to optimize the classifier among three char-
acteristic metrics D, Imax, and Imean. Fig. 6B shows that
124 957 MDA-MB-231 cells out of 125 000 cells within the
training set were predicted as true positive and with 0 false
positives from 150 000 cells of PBMCs. Similarly, Fig. 6D
shows that 124 957 MCF7 cells out of 125 000 cells were pre-
dicted as true positives and with only one false positive from
the population of 150 000 PBMCs. It can be concluded that
the present machine learning algorithm provides high accu-
racy identifying targeted cells based on their three character-
istics, D, Imax, and Imean. As expected from single cell metrics,
diameter is the overriding discriminating metric for both de-
cision trees; however, incorporating data from both intensity

Fig. 5 The receiver operating characteristics (ROC) curve showing the false positive rate (FPR) versus the true positive rate (TPR) with respect to
three characteristic metrics: size (D), mean intensity (Imean), and maximum intensity (Imax). The ROC curve is shown for distinguishing (A) PBMC &
MDA-MB-231 and (B) PBMC & MCF7 where the line TPR = FPR corresponds to random guessing. For visual clarity the zoomed-in ROC curves to a
false positive rate of 0.1 are presented in (C) and (D) corresponding to (A) and (B) respectively.
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metrics is necessary for optimal differentiation. We also veri-
fied that linear discriminant analysis and support vector ma-
chines generated similar improved accuracy over binary dis-
criminants by incorporating all three metrics. In summary,
these results suggest the potential for each of the three met-
rics, D, Imax, and Imean, to support enumeration of tumor cells
within a background of blood.

2.4 Identification and enumeration of spiked tumor cells in
lysed whole blood

The classification strategies developed above were used to
identify breast tumor cells within a background of lysed

blood based on the inline-DHM metrics of size, maximum
intensity, and mean intensity. In more detail, samples
containing crude ACK Lysing Buffer-processed healthy donor
blood cells containing WBCs and residual RBCs at a total cell
concentration of 0.45 million per mL were spiked with breast
tumor cells (MDA-MB-231 or MCF7) at approximately 10, 50,
and 100 tumor cells per ml. Significantly, the blood donor
was distinct from the donor used to develop the classifier. In
these experiments, each hologram corresponds to measuring
approximately 100 cells. Since we acquired 100 holograms
per second for 45 s, we processed 4500 holograms and char-
acterized ≈450 000 cells per spiked sample, or equivalently
10 000 cells per second.

Fig. 6 The decision tree based on the CART-algorithm to develop classifiers using the characteristic metrics of size (D), maximum intensity (Imax)
and mean intensity (Imean) to discriminate populations of PBMC & MDA-MB-231ĲMB231) and PBMC & MCF7. (A) & (B) show the decision tree and
the predicted values of PBMC and MB231 cells with respect to their true values. Similarly, (C) & (D) show the decision tree and the predicted values
of PBMC and MCF7 cells with respect to their true values.
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With respect to computational analysis, each hologram was
numerically reconstructed and the position, size, and intensity
of each cell were determined. Fig. 7A shows the cropped holo-
gram (500 × 500 μm2) of cells flowing through the channel,
from the original hologram of size 1024 × 1024 μm2. The deci-
sion classifier developed through training data (Fig. 6) was
used to differentiate blood cells from each cancer cell line en-
abling a 3D reconstruction of the location and inferred identity
of the mixed cells within the channel (Fig. 7B). This single
snap-shot shows the location of thirty cells classified as PBMCs
(red) and two cells classified as MCF7 cells (blue) flowing along
the x-direction within the rectangular microfluidic device
(Fig. 7B). We note that the laminar nature of flow introduces
the complication of counting slower cells multiple times in se-
quential frames. The multiple counting of cells has been elimi-
nated using the streamline coordinates, y and z, of
reconstructed cells. The detailed process of eliminating multi-
ple counts has been reported in our previous work.28

Fig. 7C and D report the number of feed (input) and the
identified (output) breast tumor cells, MDA-MB-231 and MCF7
respectively. At a spiked concentration of C = 0 tumor cells, 6
cells were identified as false positive out of 450 000
reconstructed lysed blood cells using classifier defined for
MDA-MB-231 in Fig. 6A whereas; using the classifier for MCF7
as defined in Fig. 6B, no false positives were identified out of

450 000 reconstructed lysed blood cells. At spiked concentra-
tions targeting C = 10, 50, and 100 cells per mL solution, for
each breast tumor cell line the numbers of feed (input) cells are
in close agreement with those of the identified (output) cells
(Fig. 7C and D, ESI† SM1). Differences in exact values are attrib-
uted to challenges in making accurate stock solutions due to
manual counting errors using a hemocytometer at low concen-
trations and dilutions of a stock solution45 as well as variable
cell settling prior to imaging sub fractions of the prepared solu-
tions. That differences between the intended and observed cell
number do not vary systematically supports this hypothesis of
random error. The low false positive rate cancer cells identified
in the PBMC sample was replicated in blood processed from
two additional donors (ESI† SM2).

Next, we estimate the limit of detection (LoD) for DHM to
fingerprint tumor cells in blood. LoD can be defined as the
mean number of tumor cells detected in non-spiked sample
+2× (standard deviation). Using the data reported in ESI† Ta-
ble SM2, we find that for MCF-7 cells LoD = 4.33 cells per mL
and for MDA-MB231 cells LoD = 9 cells per mL. This LoD is
potentially sufficient for DHM to enumerate CTCs in ad-
vanced cancer patient blood samples since using the CTC-
chip45 it was found that in 55 lung cancer patient samples
tested, 11 had 5–20 CTCs per mL, 11 had 20–50 CTCs per
mL, 11 had 50 CTCs per mL and 22 had more than 100 CTCs

Fig. 7 Identification and enumeration of tumor cells spiked in lysed whole blood. (A) The hologram of lysed blood sample spiked with MCF7 cells,
(B) 3D model generated from numerical reconstruction of single hologram in (A). Identification of spiked cells (C) MDA-MB-231 and (D) MCF7 cells
at three different concentrations of spiking in the lysed blood populations of 0.45 million per mL of PBMC. The square-black and circular-blue
symbols show the concentration of spiked cells (feed) and detected cells (observed) is presented. The concentration of PBMCs is 0.45 million per
mL in PBS. Error bars represent the standard deviation of 3 experiments. A ESI† tables (SM1 and SM2) shows the detailed values of each data point.
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per mL. Future studies focusing on patient blood samples
can provide an actual quantitative estimate of limit of detec-
tion of DHM-based label-free identification of CTCs.

3. Discussion

In this work, we have introduced inline-DHM as a label-free
imaging platform appropriate for the identification and char-
acterization of cells in bulk flow, with a focus on detecting tu-
mor cells in blood. We have established three suitable met-
rics, cell diameter, Imax and Imean, for characterizing blood
components and tumor cells. We applied machine-learning
approaches to identify tumor cells within a background of
blood cells. Testing the classifier on the distinct blood sam-
ple used for the spiked experiments resulted in, at most,
0.001% false positives (blood cells identified as tumor cells).
Below we discuss how our existing approach can be advanced
to achieve significantly more throughput and also present av-
enues for configuring DHM technology for analyzing real
CTCs in patient samples.

Advancing current capabilities of DHM

In this study, we typically analyzed ≈100 cells per 3D image
volume and 4500 holograms, achieving a throughput of
450 000 cells per sample. In the future, it is possible to in-
crease the throughput of cellular analysis to 106–107 cells per
sample. The main limiting factors for increasing throughput
is the camera system needed to record/store the holograms
and the computational time required for numerical recon-
struction. In this work, we used a CMOS camera (Phantom
v.310) to record at 100 fps and store 4500 holograms per sam-
ple. The 16GB RAM available on this camera can be used to
store as many as 20 000 holograms, indicating that 2 × 106

cells can be analyzed with our existing hardware. However,
the time-consuming step then becomes the computational
processing of the holograms. Here, we used a standard desk-
top computer (3.6 GHz processor, 8 GB RAM) to analyze the
4500 holograms, which took ≈7 s per hologram and ≈8.75
hours per sample. Rather than a single processor, by pursu-
ing distributed computing, along with optimized reconstruc-
tion algorithms, we anticipate the computational analysis
time can be reduced significantly. Given that the computa-
tional processing can be done off-line and is not labor inten-
sive, our label-free approach outcompetes tedious immuno-
fluorescence staining methods to detect cancer cells in mixed
populations.

We acknowledge that there are other digital holographic
implementations.46–51 We have chosen to implement inline-
DHM in the present study due to its relatively simple configu-
ration, straightforward implementation with microfluidic sys-
tems and capability to handle large sample volume with re-
duced computational analysis. In addition, it is easier to
obtain x, y and z coordinates of the cells in the imaged sam-
ple volume which are used to correlate the cells between suc-
cessive frames and eliminate multiple counting of cells.

Moving DHM towards analyzing CTCs in cancer patient
samples

Looking towards applications targeting patient screening, it is
generally accepted that at least 3 mL of patient blood needs to
be processed to achieve reliable information about CTCs
where whole blood is estimated to contain approximately 4–5
× 109 RBCs and 5–11 × 106 WBCs per mL. In this study, we
have used lysed blood and since the sample injection flow
rate is 1400 μL min−1, the volume processing rate is 23 μL s−1.
Sample preparation involving lysis of RBCs in 3 mL of patient
blood will yield ≈107 WBCs per mL in 22 mL, which can be
imaged by DHM in ≈50 minutes @ 100 fps. We note that the
injection flow rate or sample processing rate can be increased
to beyond what we used in this study, in which case the cam-
era frame rate would need to be increased. This will also lead
to reduced image acquisition time.

Rather than lysing blood, non-invasive CTC enrichment
strategies can also be pursued in combination with DHM de-
tection. For example, RBCs might be removed through deter-
ministic lateral displacement (DLD) debulking in which fluid
under laminar flow regimes is passed through asymmetric
micropillar arrays in a microfluidic device.52,53 Samples
might be further enriched by additionally removing a sub-
population of PBMCs through a variety of inertial techniques
such as those incorporated into spiral devices using dean
flow fractionation (DFF),10,54 the Vortex Chip,7 and the multi
orifice flow fractionation (MOFF) microfluidic device.14

Using the above enrichment methods, it is useful to esti-
mate the amount of image acquisition that is needed to DHM-
process the entire sample volume. Integrating the DFF54

method which enriches the sample by 109 fold over RBCs and
103 fold over WBCs, 3 mL of injected blood sample results in
≈25 mL of enriched sample containing 1300 WBCs per mL.
Given the sample processing rate is 23 μL s−1 in this study, we
can DHM-image the≈25mL in≈19minutes @ 100 fps –which
is 3× less time than the lysis method. Processing methods such
as the Vortex Chip,7 which recover highly enriched samples in
small volumes (<1ml) might be DHM-imaged in<60 seconds.

Finally, in this study we have demonstrated detection of
as few as 10 tumor cells per mL at a preliminary false positive
rate of 0.001%. We have quantified and reported the low rate
of cell line false negatives in table in Fig. 6B (for MCF7) and
Fig. 6D (for MDA-MB-231) – both show 43/124957 or 0.034%.
The accuracy of detection can be improved by incorporating
additional metrics (e.g. gradient of intensity) from the data-
rich holograms. Such improved metrics should also limit
false negatives of patient-derived CTCs as the strong signals
exhibited by the two tested cell lines might not extend to
patient-derived samples. Thus, the DHM technology has the
potential to robustly identify CTCs and classify their subpop-
ulations without destructive processing and labeling of cells.

4. Conclusion

Results presented here analyzing donor blood and cancer cell
lines suggest that the combined DHM-derived signatures of
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single cell diameters and intensity profiles provide a new and
promising metric for differentiating tumor derived cells from
background hematopoietic cell types. Using these metrics,
inline-DHM is expected to provide rapid, highly accurate,
platform-flexible, and label-free discrimination of tumor cells
in patient blood. Moving beyond CTC applications, our ap-
proach provides a generic label-free method for detecting tar-
get cells in mixed populations, which is useful in cytopathol-
ogy, drug resistance, and identification of rare stem cells.

5. Methods
5.1 Microfluidic device fabrication

The microfluidic channels of width, w = 1000 μm, and
height, h = 350 μm, were fabricated using soft lithography.55

Negative photoresist (SU-8 2050) were used to make the
mold. Polydimethyl siloxane (PDMS) prepolymer and curing
agent were mixed in a 10 : 1 ratio, degassed, poured on the
mold and cured for a minimum of two hours at 65 °C. The
PDMS replica was cut with a scalpel and peeled. Inlet and
outlet reservoirs were defined by punching holes and the
channel was irreversibly bonded to a glass slide 25 mm × 75
mm × 1 mm; Fisher) after exposing the bonding surfaces of
the PDMS device and glass slide to plasma for 2 minutes.

5.2 DHM sample preparation

For bead validation assays, polystyrene beads (Polyscience
Inc., NIST traceable polystyrene beads) and silica beads (Cor-
puscular Inc., Monodisperse Silica Microspheres) of mean di-
ameters of 8 and 15 μm were used. Beads were diluted into
phosphate buffered saline to a final concentration of 0.45
million beads per ml prior to characterization.

For single cell type characterization tumor cell lines MDA-
MB-231 (passage 9, purchased from ATCC, Manassas, VA)
and MCF-7 (passage 10, provided by Dr. Lauren Gollahon at
Texas Tech University) were cultured in DMEM media
supplemented by 10% fetal bovine serum (FBS), 1% penicil-
lin–streptomysin solution (Gibco) and 1 nM sodium pyruvate.
Prior to DHM imaging, adherent cultured cells were detached
by incubating with trypsin/EDTA solution, neutralized with
serum and suspended in phosphate buffered saline. Cells
were filtered through a 30 μm pre-separation filter (Miltenyi
Biotec) and adjusted to the designated concentrations by fur-
ther dilution with phosphate buffered saline.

Whole human blood was obtained from consenting
healthy donors under IRB-approved protocols and processed
three days after blood donation. RBCs were characterized as
a concentrated subpopulation purified from platelets and
white blood cells using Ficoll-Paque with SepMate separation
inserts (Stemcell Technologies) as directed by manufacturers.
WBCs were isolated from whole blood using ACK Lysing
Buffer (Life Technologies) as directed by manufacturer in-
cluding a secondary lysing step to support more complete
RBC removal. Cancer cell lines were cultured on tissue cul-
ture polystyrene using standard tissue culture procedures
and imaged within one hour after trypsin mediated detach-

ment. Suspensions of cancer cell lines or blood components
were filtered through a 30 μm filter and diluted to approxi-
mately 0.45 million cells per mL in PBS prior to DHM pro-
cessing. More than 100 000 cells were processed for each
sample.

5.3 Digital holography microscopy setup

Details of our DHM set up are identical to those described in
our previous study.28 Briefly, as shown in Fig. 1A the in-line
DHM arrangement consists of a laser, a spatial filter and col-
limator assembly, and an inverted optical microscope (IX-71,
Olympus Inc.). A He–Ne laser (10 mW, λ = 0.6328 μm,
Thorlabs) is used as a light source, operating in continuous
wave (CW) mode. The laser beam is filtered and expanded by
a spatial filter assembly consisting of a microscope objective
(10×, NA = 0.25; Thorlabs) and a pinhole (25 μm diameter).
The expanded beam is then collimated using a plano-convex
lens (focal length, f = 100 mm, Thorlabs). The diameter of
the collimated beam is approximately 5 mm. This collimated
beam of laser light illuminates cells or beads flowing in the
microfluidic channel. The flow through the channel is gener-
ated by a syringe pump (KD Scientific). The cross-sectional
dimensions of the channel are 1000Ĳy) × 350Ĳz) μm2. The 2D
hologram of cells or beads is generated in the focal plane of
the microscope objective (M = 10×, NA = 0.25; Thorlabs) of
the optical microscope. The magnified image of the holo-
gram is recorded on a CMOS camera (Phantom v310, Vision
Research) at a resolution of 512 × 512 (20 μm per pixel) and
12-bit gray level quantization. The influence of DHM record-
ing parameters on accuracy of determining axial position and
scattered intensity are described in our previous work.28

5.4 Data analysis platform

The recoded holograms were transferred to a computer for
numerical reconstruction and data analysis. Detailed recon-
struction methodology for characterization of particles33–35

and of cells is described in our previous work.28 We
implemented numerical reconstruction procedure in
MATLAB, using a standard desktop computer (Intel(R) Core
(TM) i7-4790 @ 3.60GHz, RAM: 8.00GB). The processing time
is about 1.94 hours to analyze 1000 holograms.
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