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Origin of periodic and chaotic dynamics due to drops moving in a microfluidic loop device
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Droplets moving in a microfluidic loop device exhibit both periodic and chaotic behaviors based on the
inlet droplet spacing. We observe that the periodic behavior is an outcome of carrier phase mass conservation
principle, which translates into a droplet spacing quantization rule. This rule implies that the summation of exit
spacing is equal to an integral multiple of inlet spacing. This principle also enables identification of periodicity
in experimental systems with input scatter. We find that the origin of chaotic behavior is through intermittency,
which arises when drops enter and leave the junctions at the same time. We derive an analytical expression to
estimate the occurrence of these chaotic regions as a function of system parameters. We provide experimental,
simulation, and analytical results to validate the origin of periodic and chaotic behavior.
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Motion of droplets in a microfluidic loop device is a
very simple phenomenon that exhibits complex spatiotemporal
dynamics [1,2]; such phenomena are rare in practice [3]. It
has been shown that a train of droplets entering the loop
at fixed inlet spacing could exit the loop at periodic or
chaotic time intervals [1,4–6]. While the rules governing the
droplets’ motion are uncomplicated, discrete decision-making
at bifurcations and collective hydrodynamics lead to intricate
dynamics [2]. This contrast between the simplicity of the
device and the plurality of its response has resulted in this
system being investigated by several researchers [5–9]. Despite
these investigations the dynamics of drop traffic in a loop is
not fully understood. In this paper, we address the following
three questions: (i) What are the origins of the periodic and
chaotic behavior? (ii) How does the system transition between
these behaviors? (iii) Is it possible to predict the regions of
periodic and chaotic behavior? Addressing these questions is
not only important for the design of drop-based fluidic devices
[1,2,5,10] but more broadly has relevance in understanding
how decision-making leads to multistability and memory
storage [7,11] in biological networks [12,13].

Consider a train of droplets entering a microfluidic loop
device as shown in Fig. 1 at a constant inlet spacing λ. The
relative spacings between the droplets remain constant until
they reach the loop junction. As the droplets enter the upper or
lower branch, the hydraulic resistance of that branch changes.
This results in a redistribution of the bulk flows to the upper and
lower branches. Since the droplets’ velocities are proportional
to the bulk flow rate, the droplets in the upper and lower
branches move at different velocities leading to changes in the
relative distances between them as they exit the loop.

The loop device (G) transforms the spacings of a sequence
of n droplets at the inlet ({λ}n) to an exit sequence, {λ̄}n =
{G(λ)}n. It has been shown in the literature that the exit
spacings can either form a periodic or a chaotic pattern [5,6].
These patterns are captured through a Poincaré map, where the
number of distinct clusters represent the number of periods.
There are two disadvantages to such a characterization: it is
difficult to exactly identify the number of periods when con-
fronted with scatter in the data due to noise in the experiments,
and the Poincaré map does not explain the physics of the
process that leads to these periodic or aperiodic behaviors.
To address these two issues, we start with a mathematical

definition of periodicity. The exit sequence ({λ̄}n) is periodic
with period p, where p is the smallest positive integer such
that {λ̄}i = {λ̄}i+p ∀ i ε N. The exit sequence is aperiodic, if
there exists no p such that {λ̄}i = {λ̄}i+p ∀ i ε N. From the
definition of periodicity it can be noticed that the periodicity
condition will hold for all integer multiples of p. Further, it
is self-evident that the periodicity condition cannot hold for
two p’s that are not multiples of each other. However, if the
periodicity condition is valid in some region, i.e., i ε (N1,N2)
for some p, then that behavior is termed locally periodic. We
are interested in the physics that leads to periodic behavior and
the manner in which the system transitions from periodic to
chaotic behavior and vice versa.

The sustained periodic behavior is a result of a series of
droplets taking the same decisions repeatedly—this can also
be viewed as memory of the system [7]. The decisions will
be repeated with period p if the ith and (i + p)th droplets
undergo the same experience, i.e., velocity-changes as they
pass through the loop. This happens if the loop snapshot (i.e.,
instantaneous droplet configurational positions in the loop)
encountered by the (i + p)th and the ith drop are same, which
results in an average relative velocity between these drops
to be zero. A natural consequence of this concept is that the
amount of the carrier phase fluid trapped between the ith and
(i + p)th droplets at the exit should exactly equal the amount
of the fluid trapped between the same droplets prior to entering
the loop. Mathematically, the carrier fluid present in between
ith and (i + p)th droplets prior to the device entry is pλS,
where S is the cross-sectional area of the channel. Assuming
bulk phase incompressibility, the volume trapped between the
droplets after exit is the sum of all the exit relative spacings
multiplied by S. This volume conservation that is required for
repetition translates to a remarkable “quantization of droplet
spacing (QDS)” given below:

λ̄i+1 + λ̄i+2 + · · · + λ̄i+p = pλ. (1)

If there exists a unique p, ∀ i ε N then Eq. (1) is an “if
and only if” condition for a loop device to show sustained
periodic oscillations. We validate this QDS principle that is
derived through physical arguments using network model [1].
Confined droplet dynamics is predicted using the network
model under the assumption that the droplets do not collide
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FIG. 1. A stream of droplets with constant inlet spacing passing
through a microfluidic loop device; We used Lu = 2235 μm and
Ll = 2217 μm in our simulations and experiments.

[14]. The network model has been shown to satisfactorily
predict the droplet dynamics in microfluidic loop [15] and
ladder networks [16,17]. In this model, drops are treated as
point objects moving at a velocity v = βQ/S [18–20], where
β is the slip factor, S is the cross-sectional area, and Q is
the flow rate. Ll and Lu are the length of upper and lower
branches, respectively, as shown in Fig. 1. Droplets decisions
at the bifurcation depend on the maximum instantaneous flow
rate. If same number of drops exist in both the branches, the
entering droplet always chooses the lower branch because
it is assumed to be slightly shorter than the upper branch.
This slight asymmetry ensures that the droplet decisions are
deterministic. The resistance of the branch is summation of
the resistance of the channel [15] and resistance due to drops
(nRd ), where n is the number of drops in the branch and
Rd is the excess hydrodynamical resistance per drop. Using
this network model, we illustrate the QDS principle with
two representative scenarios: 3-period and 9-period behaviors,
without input fluctuations. Motivated by Eq. (1), we plot the

value of |�i+j

i+1 λ̄ − jλ|/λ as a function of j as shown in Fig. 2.
If the QDS rule is correct then this value should be equal to zero
whenever j is equal to multiples of p, the periodicity of the
system. The initial i that is used in the equation does not have
any impact on the result because the case studies considered
here have sustained periodic oscillations. As expected, in
Fig. 2, the curve touches the x axis at N = 3, 6, 9 . . . for
the 3-period case and N = 9, 18 . . . for the 9-period case,
validating the carrier phase conservation principle.

We now validate QDS principle using an experimental
system; but estimation of the period p in case of experiments
can be complicated due to fluctuations in the inlet spacing. In
such cases using Poincaré maps [2] to obtain periodicity may
be misleading. The conservation principle provides another
view of periodicity. Looking at Eq. (1), it is apparent that the
periodicity is equal to the number of droplets that exit before
a snapshot repeats because these many droplets participate
in the conservation equation. Consider a seemingly 2-period
behavior as identified by a Poincaré map in Fig. 2(b), which
was obtained experimentally. Modeling the system without
experimental fluctuations at the inlet using experimentally
measured Rd and β values leads to a 3-period behavior. To
confirm if this is the true period of the system we used
the snapshot comparison technique derived from the QDS
principle. The 1st image is repeated after the 132nd and 264th
snapshots as shown in Fig. 2(c). In this case, three droplets
exit between 1st, 132nd, and 264th images, confirming that
this indeed is 3-period behavior, contrary to what Poincaré
map suggests. Thus, the QDS principle is extremely useful
in determining the true periodicity of loop dynamics where

FIG. 2. (Color online) Periodic behavior: (a) Quantization of droplet spacing in the cases of 3- and 9-period behaviors. (b) Poincaré
map shows a 2-period behavior, whereas simulation and experiment show a 3-period behavior, at oil and water flow rates of Qo = 550 and
Qw = 25 μ L/hr, ;Rd/Rl = 0.1 and β = 1.4 is used in the simulation. (c) It is observed that in experimental snapshots (1st, 132nd, and 264th),
three droplets exit the loop device before the images repeat.
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FIG. 3. Periodicity (p) calculated using Eq. (1) for an aperiodic
system at distinct intervals of time index (I ) shows: (a) a simulated
system showing intermittency between zone 1 and zone 3 for a
particular inlet spacing λ/Ll = 0.99; Rd/Rl = 0.15; the inset shows
a graph diagram depicting these transitions due to binary decisions in
the loop device; (b) an aperiodic experimental system demonstrating
similar behavior; Qo = 250 and Qw = 25 μL/h.

experimental scatter might otherwise make such identification
problematic.

We now turn our attention to the understanding of aperiodic
behavior and the physics that leads to the transitions from
periodic to aperiodic behavior and vice versa. A deterministic
system resulting in aperiodic behavior with sensitivity to
initial conditions is defined as chaos [21]. If the loop system
G shows these characteristics then the loop system is said
to be chaotic. We use a Lyapunov exponent to observe the
sensitivity to initial conditions. In the works presented in the
literature, experiments and simulations have been conducted
varying the inlet spacing to predict these transition regions.
In our work, to understand the origins for these transitions
we performed simulations and experiments at a fixed inlet
spacing where the dynamics was chaotic and followed the time
evolution of the exit spacing. The simulations are performed
with a deterministic network model without any experimental
uncertainties. To identify the origin of these transitions, we
explore what happens to the conservation principle in the
aperiodic region.

In Fig. 3(a), the x axis of the plot is increasing natural
numbers (I ) representing the I th time that the QDS principle
was obeyed in the outlet sequence of the simulation. The
y axis denotes the number of droplets that participate in
the QDS equation (which is the measure of periodicity p)
when it holds for the I th time. This plot suggests that even
in the aperiodic case, the conservation principle is still driving
the physics; however, the periodicity changes with time and
the conservation equation is valid at all these periodicities.
Zone 1 in Fig. 3 shows an initial period of 23, where for a
while a local periodic behavior is observed, which is broken
by a burst of intermittent behavior as observed in Zone 2
then transitioning to a 29-period; this is a classic case of
intermittency [21]. Notice, however, the subtle distinction
between globally periodic and locally periodic behaviors. In
the former case, snapshots have to repeat, whereas in the
latter case, the snapshots need not repeat. The intermittent
appearance of periodic behavior in an aperiodic scenario is
depicted graphically in the inset of Fig. 3(a), where the values
“0” and “1” represent the binary decisions of the droplets, i.e.,
choice of either the upper or the lower branch. In the transition

regions any combination of 0’s and 1’s is possible. This can
result in large intermittent periods and sporadic transitions to
other periodic behaviors similar to the phenomena observed
in Zone 2 of the simulation. Note that the simulations are
performed with no uncertainty.

We now ask if this intermittent behavior leads to chaos?
We define a Lyapunov exponent similar to Behzad et al. [6],
as follows:

L = 1

s
log

[
�λ̄s

�λ

]
. (2)

The Lyapunov exponent L is calculated after a very long train
of s droplets exit the loop device. The inlet spacing (λ) is
perturbed by a factor of 10−5 times (λ) and �λ = λoriginal −
λperturbed. In the transition regions the Lyapunov exponent is
positive and in the periodic regime L ≈ 0. A positive Lyapunov
exponent implies that the loop system is sensitive to initial
conditions, whereas a zero Lyapunov exponent implies the
system has a stable cycle and is conservative. The microfluidic
loop simulation starts with zero drops in the loop device,
hence there will be initial transitions in the exit spacing.
These transitions attenuate down and the system settles to
a stable cycle in the case of periodic dynamics, while in
an aperiodic region, the system transitions from one cycle
to another. Therefore, the loop system never settles down to
a stable cycle in the transition regions; this is observed in
Fig. 3(a). The system shows local periodic behavior, but the
snapshots do not repeat exactly as in the globally periodic
regions. The positive Lyapunov exponent along with aperiodic
behavior observed in Fig. 3(a) shows that the loop dynamics
is indeed chaotic in the transition regions.

We now understand the transitions in the loop device
through experiments. Figure 3(b) shows results from an
experimental system displaying aperiodic behavior where the
conservation principle is valid for distinct sets of droplets. In
the case of experimental systems, the inevitable noise makes it
impossible to identify chaotic phenomena exactly. Since, un-
like simulations, it is not possible to exactly fix the inlet spacing
in experiments, it is impossible to experimentally demonstrate
that even at fixed inlet spacings intermittency is exhibited.
However, the natural variations in λ (which can be thought of
as being equivalent to perturbations in the simulations) result
in chaotic behavior in the experimental system in the regions
predicted by the theory, whereas similar fluctuations in the
periodic region does not have a significant effect and the system
remains periodic. Further, the transition phenomenon mirrors
the simulation results as seen in Fig. 3(b). Therefore, through
simulations and experiments, we understand that transitions
lead to chaos through an intermittency route. Our analysis
further suggests that the aperiodic behavior is likely to be
interspersed between the periodic regimes.

We now ask how is the chaotic behavior triggered? Figure 4
shows the snapshots of experimental scenario where the
chaotic behavior is observed [cf. Fig. 3(b)]. Inspection of
these snapshots reveal an important insight regarding what
triggers the intermittent behavior. As the exiting drop leaves,
the entering drop can either take the lower or the upper
branch. In the case of Fig. 4(a), the entering droplet chooses
the upper branch, but in the case of Fig. 4(b), the droplet
chooses the lower branch. Although the system has very
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FIG. 4. (Color online) A loop device showing transitions: (a) a sequence of snapshots showing the entering droplet choosing the upper
branch; (b) at a later time in the same experiment, with similar conditions, the entering droplet chooses the lower branch. Qo = 250 and
Qw = 25 μL/h.

similar conditions at both times, the dynamics of this system
moves to a completely different regime due to a single droplet
altering its decision leading to chaotic behavior. Since such
transitions may happen at different time instants, the dynamics
of the system becomes chaotic. For aperiodic behavior to be
manifested, there has to be a critical event to break the constant
periodic cycle. We conclude that this critical event is one where
the droplets enter and exit at around the same time, leading to
changes in the droplets’ decisions. This will in turn change the
amount of dispersed phase fluid trapped between the droplets.

We now focus on predicting these intermittent transitions
using the important insight that simultaneous entry and exit
of drops at a junction leads to chaotic behavior. To predict
transition regions we simulated the dynamics for a wide range
of inlet spacings using the network model. Based on input
frequency, after the initial transients, the droplet exit pattern
reaches a steady state. Figure 5(a) shows a bifurcation map,

FIG. 5. (Color online) Bifurcation map simulated by changing
the input spacing in a scenario where Qo = 550 and Qw = 25 μL/h,
Rd/Rl = 0.1; the bottom plot shows the prediction of transitions in
the bifurcation maps using the proposed analytical expression along
with that reported in the literature [5].

where normalized inlet spacing is plotted on the x axis and
the normalized outlet spacing is plotted on the y axis. It is
clear that there is a band of (infinite set) λ values in a very
small range that characterizes the transition region as shown
in Fig. 5(a). The width of transition band is dependent on
the droplet size. In the network model, we assume droplets as
point objects. The finite sizes of the droplets affect the width of
the chaotic regions. As the possibility of droplets entering and
exiting the loop device at the same time increases for longer
droplets, we believe that the width of these transition bands will
increase as the droplet size increases. Predicting the range for
λ values in the transition band is a difficult task. We therefore
attempt to predict a particular value of λ (λc) in the transition
region, which is still practically useful as the transition band
is narrow. To predict this critical inlet spacing λc, we need to
find a λ that results in a scenario where a droplet enters the
loop while another droplet is exiting. As this could happen
for several different pairs of droplets (leading to a range of λ

values), to obtain an analytical expression, we assume that the
critical λc is when the first droplet exits the loop while another
droplet arrives at the junction. We also assume that the loop
is symmetric (Ll ≈ Lu), making droplets alternate between
top and bottom branches. Depending on the λc, the number of
droplets that a loop holds (n) before the first droplet exits could
be different. The exit time of the first droplet after n droplets
enter the loop device (shown in Fig. 1) is as follows:

t1,exit =
Ll − ∑n

2 λ
{

Ru+floor[(k−1)/2]Rd

Ru+Rl+(k−1)Rd

}
βQ/S

(
Ru+Rd

Ru+Rl+nRd

) (3)

In Eq. (3), Rl and Ru are the branch resistances. The entry
time of the (n + 1)th drop in the loop is given by tentry =
λS
βQ

. Since the critical (λc) values occur when t1,exit = tentry,
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we get

Ll

λc

=
n∑

k=1

Ru

Ru + Rl + kRd

+
n∑

k=1

floor(k/2)Rd

Ru + Rl + kRd

. (4)

The critical λc values are obtained by varying n,n ∈ N. We
note that the n used in the calculation of a particular transition
λc does not provide any indication of the period p of the
sustained periodic behavior that follows the transition. This
is because the transition λc has no bearing on the number of
droplets for which the conservation principle holds.

We validate Eq. (4) using a simulated bifurcation map and a
recent result from literature [5]. Simulations results are shown
in Fig. 5(a); at λ > 1, the system shows a steady 2-period
behavior, but as the spacing decreases, the outlet periodicity
transitions from a 2-period to a 3-period behavior—observe
that there is no period doubling vis a vis logistic map [21].
This is because the transitions happen through intermittency
route. The 3-period behavior lasts for some time and the system
goes back to a 2-period behavior. After the next transition, the
system drifts to a 4-period behavior. We observe only three
values repeating within the 4-period pattern. The analytical

expression captures all these transition regions, corroborating
the observation that droplets entering and exiting at the same
time leads to chaotic behavior.

In conclusion, we propose a rule for quantization of droplet
spacing that is valid for periodic and chaotic behavior in
microfluidic loop systems. As the conservation of spacing is
valid for both periodic and chaotic regions of the loop device,
this device resembles a Hamiltonian system [8]. The chaotic
behavior is a result of transitions occurring when droplets
enter and exit at the same time. This is akin to complex
sequences derived with simple rules in Ref. [22]. We derive
an analytical expression for predicting the transition regions
based on the new physical insights proposed in this paper.
The results suggest that the system achieves chaotic behavior
through a phenomenon called “intermittency route to chaos”
[21,23] and not just because of a 3 -period behavior [24].
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