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The relative velocity and extra pressure drop of a single vesicle flowing through
a square microchannel are quantified via boundary element simulations, lubrication
theory and microfluidic experiments. The vesicle is modelled as a fluid sac enclosed
by an inextensible, fluidic membrane with a negligible bending stiffness. All results
are parametrized in terms of the vesicle sphericity (i.e. the reduced volume) and
flow confinement (i.e. the ratio of the vesicle radius to the channel hydraulic radius).
Direct comparison is made to previous studies of vesicle flow through circular tubes,
revealing several distinct features of the square-channel geometry. Firstly, fluid in the
suspending medium bypasses the vesicle through the corners of the channel, which in
turn reduces the dissipation created by the vesicle. Secondly, the absence of rotational
symmetry about the channel axis permits surface circulation in the membrane (tank
treading), which in turn reduces the vesicle’s speed. At very high confinement, both
theory and experiment indicate that the vesicle’s speed can be reduced below the
mean speed of the suspending fluid through this mechanism. Finally, the contact area
for lubrication is greatly reduced in the square-duct geometry, which in turn weakens
the stress singularity predicted by lubrication theory. This fact directly leads to a
breakdown of the lubrication approximation at low flow confinement, as verified by
comparison to boundary element simulations. Since the only distinct property assumed
of the membrane is its ability to preserve surface area locally, it is expected that the
results of this study are applicable to other types of soft particles with immobilized
surfaces (e.g. Pickering droplets, gel beads and biological cells).

Key words: capsule/cell dynamics, low-Reynolds-number flows, microfluidics

1. Introduction
Modern microfluidic devices have revolutionized experimental study of the transport

and fluid dynamics of biological cells (Dahl et al. 2015). The motion of single cells

† Email address for correspondence: esgs@stanford.edu
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through a tight constriction has been of central interest, e.g. for understanding the
hemodynamics of the microcirculation (Goldsmith & Skalak 1975; Secomb et al.
1986; Pries, Neuhaus & Gaehtgens 1992), characterizing cancer cell mechanics
(Byun et al. 2013) or developing biocompatible drug delivery carriers through
‘cell squeezing’ (Sharei et al. 2013). The main attraction of microfluidic devices
is the relative ease with which they may be fabricated (e.g. via soft lithography),
the exquisite control over the device geometry and the small volume of fluid
sample required for experimentation (Xia & Whitesides 1998). Consequently, many
experiments may be conducted simultaneously at relatively low cost. Moreover, at
length scales of the order of 10–100 µm, inertial forces are often negligible and
hence microfluidic fluid flow typically is in the Stokes regime (Squires & Quake
2005). Useful corollaries of Stokes flow (linearity, reciprocity and temporal invariance)
facilitate analysis and prediction of microfluidic device operation by hydrodynamicists.

The hydrodynamics of freely suspended particles (rigid or soft particles, droplets
and biological cells) driven by a pressure gradient through a conduit is quantified by
two figures of merit. The first is the translational velocity U of a particle relative to
the mean velocity V of the suspending fluid flow. (The latter quantity V is not to be
confused with the velocity of the undisturbed flow. Both U and V must be measured
simultaneously as the particle flows through the conduit via a controlled pressure
gradient.) The relative velocity U/V quantifies the mobility of the particle through
the conduit, and is typically bounded (from above) by the maximum velocity in the
channel. That is to say, the average velocity of a freely suspended particle – one
free of influence of external body forces – cannot exceed the maximum velocity in
the channel. For a Poiseuille flow through a circular tube, this upper bound is set by
2V . The particle translational velocity U is relatively easy to measure by tracking its
position in time (Savin, Bandi & Mahadevan 2016). The mean fluid velocity V must
be simultaneously measured, e.g. by measuring the flow rate through a ‘reference
channel’ driven by the same pressure gradient as a ‘test channel’ containing the
particle. Thus, the relative velocity U/V is a relatively simple metric for quantifying
the hindered mobility of particles due to channel confinement.

The second hydrodynamic figure of merit is the extra pressure drop 1p+ created by
the presence of a suspended particle (Brenner 1970, 1971). The extra pressure drop
is an intrinsic measure of particle dissipation in channel flow, akin to the intrinsic
(or per particle) viscosity measured in a shear-flow experiment of a dilute suspension.
Fluid flow in a conduit creates dissipation on the conduit walls, which in turn must
be balanced by a driving pressure force. In the absence of suspended particles, the
pressure drop 1p◦ required to drive a Newtonian fluid through a duct of constant
cross-section at a (steady) flow rate Q is given by Poiseuille’s law,

1p◦ = LcKhydQ, (1.1)

where Lc is the channel length and Khyd is a hydraulic resistance coefficient that
depends only on the shear viscosity µ of the fluid and the geometry of the duct. For
cylindrical conduits, the hydraulic resistance is maximized when the cross-section is
circular. For example, letting R be the channel hydraulic radius and µ the suspending
fluid viscosity, R4Khyd/µ= 8/π' 2.55 for a circular tube, 1.78 for a square duct and
20/(9

√
3)' 1.28 for an equilateral triangular duct (White 1991). The flow rate Q is

related to the mean fluid velocity V by

Q= A×V, (1.2)
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where A× is the area of a cross-section (e.g. A×/R2
= π ' 3.14 for a circular tube,

4 for a square duct and 3
√

3' 5.20 for a triangular duct). Introducing particles into
the fluid creates a disturbance velocity field and hence the total pressure drop 1p=
1p◦+1p+ required to push the particle suspension through the duct at the same flow
rate Q is altered (for most systems, 1p>1p◦). The dimensionless extra pressure drop
1p+R/(µV) can be directly related to the apparent intrinsic viscosity of the particle
suspension at known concentration c, and thus gives a measure of the suspension
rheology (Tözeren & Skalak 1978; Barakat 2018).

Aside from the suspension concentration, the primary control parameter that
determines the relative velocity U/V and dimensionless extra pressure drop 1p+R/(µV)
is the ratio between the characteristic radius of the particle R0 and the hydraulic
radius of the channel R, λ = R0/R. Biological cells can deform under the action
of hydrodynamic stresses, and so the dimensionless groups U/V and 1p+R/(µV)
for cellular suspensions are also nonlinearly coupled to cell shape configurations.
Early studies of cellular flow through narrow channels neglected this dependence
by focusing on ‘rigid-particle models’, mostly in circular-tube geometries (Brenner
& Happel 1958; Goldsmith & Mason 1962; Lighthill 1968; Wang & Skalak 1969;
Brenner 1970; Chen & Skalak 1970; Hochmuth & Sutera 1970). In the Stokes-flow
regime, the equations governing the flow of rigid particles in bounded domains are
linear, provided that their configurations in space and time are known. In order to
make analytical progress in theoretical calculations, often the particle configurations
are simplified, e.g. by assuming diluteness or some well-defined structure to the
suspension. The main results from studies of rigid particles flowing through circular
tubes show that, for particle dimensions R0 of the order of the tube radius R, the
relative velocity U/V is in excess of unity by an amount proportional to the flow
area through which fluid may bypass the particle. The dimensionless extra pressure
drop 1p+R/(µV) typically diverges in proportion to some power of the reciprocal
gap thickness, say (R−R0)

−1. The strength of this singularity depends on the particle
surface curvature at the point of contact, e.g. the singularity is of O[(R−R0)

−1/2
] for

spherical particles and O[(R−R0)
−1
] for cylindrical particles whose axis is coincident

with the channel axis.
Later theoretical studies of cellular flow through conduits incorporated intrinsic

cellular mechanics, using white blood cells (Tözeren & Skalak 1978), red blood
cells (Secomb et al. 1986; Halpern & Secomb 1989) and vesicles (Bruinsma 1996;
Trozzo et al. 2015; Barakat & Shaqfeh 2018a,b) as model systems. The material
properties of the cell thus become parameters in the flow system. The most basic
cellular models typically fall into one of three categories:

(i) The entire cell volume is treated as an elastic solid with bulk elastic moduli. This
is a common model for white blood cells.

(ii) The membrane is treated as a two-dimensional solid, with elastic properties akin
to that of a thin shell. The principal deformation modes include in-plane shear
and dilatation (with surface elastic moduli ES and ED, respectively, with units of
force ÷ distance) and out-of-plane bending (EB has units of force × distance).
Typically, the dilatational modulus ED is very large, of the order of 200 mN m−1

(Evans & Needham 1987), so a common approximation is to assume that the
membrane is surface-area incompressible. This is the common type of model used
for red blood cells (Skalak et al. 1973).

(iii) The membrane is treated as a two-dimensional incompressible fluid with surface
shear viscosity ηs (units of force × time ÷ distance). Out-of-plane deformation
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is governed by a bending-elastic modulus EB. The bending modulus of giant,
unilamellar vesicles is approximately 10−13 µN m (Evans & Needham 1987).
Typically, the surface shear viscosity ηs of membranes is small, of the order of
10−3–10−2 µN s m−1 (Evans & Needham 1987; Evans & Yeung 1994). Vesicles,
which lack the spectrin-actin cortex and hence the in-plane shear elasticity of
red blood cells, are typically modelled in this way (Helfrich 1973).

The importance of accounting for intrinsic cellular mechanics is twofold. Firstly,
cellular deformation influences the cell shape and hence the hydrodynamics. This
effect is inherently nonlinear and can lead to ‘non-Newtonian behaviour’, meaning that
the extra pressure drop 1p+ no longer scales linearly with the imposed mean velocity
V . Secondly, membrane flow can qualitatively affect the flow in the suspending fluid.
For circularly symmetric systems, cells enclosed by incompressible membranes have
uniform surface velocity; hence, they behave much like rigid particles in circular
Poiseuille flow.

All of the studies mentioned above, both for rigid particles and more realistic
‘model cells’, have focused on flow through circular tubes. One of the main
motivations for studying this geometry originates in the study of blood flow through
the circulatory system. In fact, Poiseuille’s original study of blood flow in the
microcirculation is what led to his eponymous law (Sutera & Skalak 1993). From
a mathematical point of view, the additional simplicity gained by considering a
conduit whose cross-section possesses circular symmetry also facilitates analysis.
However, fluid experimentation nowadays makes use of microfluidic devices fabricated
using soft lithography. The resulting channels are either square or rectangular
in cross-section, not circular. Unfortunately, theoretical studies of particulate flow
through non-circular conduits are relatively sparse (Tullock, Phan Thien & Graham
1992). (The closely analogous ‘plane-Poiseuille flow’ is not included in this group,
since the areal cross-section is not well defined and thus the quantities U/V and
1p+R/(µV) cease to have meaning.) Far from being a trivial change, it is expected
that the duct cross-section has a qualitative effect on the hydrodynamics due to the
broken symmetry about the channel axis. Two of the authors of the present work
have previously compared the relative velocity U/V of wax particles, vesicles and
cancer cells travelling through square ducts (Ahmmed et al. 2018). In this work,
it was shown that the relative velocity of cancer cells is higher than that of solid
particles but lower than that of vesicles for fixed radius ratio λ = R0/R, presumably
due to differences in surface mobility. The marked differences observed between these
three systems, in addition to qualitative deviations from the circular-tube geometry,
motivates additional experimentation as well as a theoretical complement.

The purpose of the present work is to investigate the hydrodynamics of a model
cell – a vesicle – in conduit flow with a non-circular cross-section. The specific case
considered in this work is that of square cross-section, which has particular relevance
to microfluidics. The theoretical problem of calculating the relative velocity U/V
and dimensionless extra pressure drop 1p+R/(µV) for a vesicle freely suspended
in channel flow is solved herein using boundary element simulations and lubrication
theory. Bending elasticity and membrane shear viscosity are neglected in the model,
so that the only characteristic feature of the vesicles is that they have incompressible
surfaces. Experimental measurements are performed using a microfluidic manometer,
previously used to study droplets, wax particles, vesicles and cancer cells (Vanapalli
et al. 2009; Khan & Vanapalli 2013; Khan et al. 2017). Excellent agreement between
theory and experiment is achieved. It is shown that vesicular hydrodynamics in the
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square cross-section is qualitatively different than that in a circular cross-section,
previously investigated by two of the authors (Barakat & Shaqfeh 2018a,b).

This paper is organized as follows. In § 2, the governing equations of hydrodynamics
are posed in conjunction with the equations of mechanical equilibrium for the vesicle
membrane. The boundary element method (BEM) used in this work is introduced
in § 3. A lubrication theory is developed in § 4. The experimental methods are
presented in § 5. A discussion of the results, including comparison between theory
and experiment, is presented in § 6. Concluding remarks are given in § 7.

2. Theoretical formulation
2.1. Governing equations

A schematic of the problem is shown in figure 1 with Cartesian axes (x, y, z) =
(x1, x2, x3). A vesicle with volume Ω0 and surface area A0 enters a square duct and
flows until it reaches some fully developed configuration (independent of end effects).
The hydraulic radius of the duct is R, defined as twice the ratio of the flow area to
the wetted perimeter of the duct. In the creeping-flow regime, the fluid velocity u and
stress S satisfy the Stokes equations (written below in Einstein notation),

∂uj

∂xj
= 0

∂Sij

∂xj
=−

∂p
∂xi
+µ∇2ui = 0

in the suspending fluid, (2.1a)


∂uj

∂xj
= 0

∂Sij

∂xj
=−

∂p
∂xi
+ µ̂∇2ui = 0

within the vesicle, (2.1b)

where µ is the exterior fluid viscosity, µ̂ is the interior fluid viscosity and p is the
fluid pressure (a Lagrange field that enforces volume incompressibility). The vesicle
is forced into motion by a mean velocity V , where

VA× =
∫

S×

u1 dS as x1→±∞. (2.2)

Here, S× denotes a cross-sectional surface in the channel with surface area A×. On
the channel wall, the velocity u is subject to the no-slip condition,

ui = 0 on the channel wall. (2.3)

The vesicle membrane is treated as an internally fluid, incompressible surface with
unit normal n. Surface-area incompressibility implies that

P ij
∂ui

∂xj
= 0 on the vesicle membrane, (2.4)

where P = I − nn is the surface projection tensor. The velocity u is continuous across
the membrane surface, whereas the stress S undergoes a jump. Neglecting bending
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R

L

x y
z

µ˚µ

z -U

Q-A÷U

FIGURE 1. Schematic of a vesicle driven by a pressure gradient through a square duct,
drawn in a reference frame translating with the vesicle velocity U.

elasticity, the membrane boundary conditions read
JuiK= 0
niJ fiK=−2Hτ

PijJ fjK=−Pij
∂τ

∂xj

on the vesicle membrane, (2.5)

where J · K is the ‘jump’ operator, H=−[(P ·∇) ·n]/2 is the mean curvature, f =S ·n
is the fluid traction and τ is the membrane tension (a Lagrange field that enforces
surface-area incompressibility). The justification for neglecting bending elasticity in
(2.5) is provided at the end of this section.

Since the vesicle membrane is a free surface, the kinematic condition further
requires that it translate with the local fluid velocity,

Dxsi

Dt
=
∂xsi

∂t
+ uj

∂xsi

∂xj
= ui on the vesicle membrane, (2.6)

where D/Dt is the material derivative and xs denotes the position of a point on
the membrane. The unit normal n can be related to xs via standard relations from
differential geometry (Kreyszig 1959).

Although the governing Stokes equations are steady, the boundary-value problem
is time dependent through the kinematic condition (2.6). Thus, the system is evolved
starting from some initial configuration for the vesicle shape. At the initial time point,
the total vesicle volume Ω0 and surface area A0 are prescribed:

at t= 0 :
∫

Vs

d3x=Ω0,

∫
Ss

dS= A0, (2.7a,b)

where Vs is the region occupied by the vesicle and Ss = ∂Vs. Thus, Ω0 and A0
take the role of parameters in the initial boundary-value problem. The conditions of
surface-area and volume incompressibility require that Ω0 and A0 be time-invariant in
the Lagrangian sense,

DΩ0

Dt
= 0,

DA0

Dt
= 0. (2.8a,b)

2.2. Vesicle velocity and extra pressure drop
The translational velocity of the vesicle is defined as the volume average of the
internal velocity field,

Ui =
1
Ω0

∫
Vs

ui d3x=
1
Ω0

∫
Ss

xiujnj dS, (2.9)
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which follows from the fact that the velocity is solenoidal. The rotational velocity of
the vesicle is not of interest here. The axial component of U is denoted by U, and
U/V denotes the relative velocity of the vesicle with respect to the mean flow.

The extra pressure drop 1p+ is obtained by requiring the vesicle to be force-free.
Applying a force balance to a control volume containing the suspending fluid, bounded
externally by the duct walls and internally by the vesicle surface, results in the
following condition,

1pA×δ1i =−

∫
Sw

fi dS, (2.10)

where Sw is the wall surface and 1p is the pressure drop over a distance Lc (the
length of the channel). Taking the formal limit as Lc → ∞ results in a diverging
pressure drop. A bounded quantity may be obtained by first subtracting out the
Poiseuille-flow contribution and taking the limit thereafter:

1p+ = lim
Lc→∞

(1p−1p◦)= lim
Lc→∞

(1p− LcA×KhydV), (2.11)

which follows from (1.1)–(1.2). The dimensionless extra pressure drop 1p+R/(µV)
can be directly related to the apparent intrinsic viscosity of the vesicle–fluid system
(Barakat 2018).

2.3. Scalings and dimensionless groups
To recast the problem in dimensionless form, all variables with units of distance are
scaled by the channel hydraulic radius R, fluid velocity u by the mean velocity V ,
fluid pressure p by µV/R and membrane tension τ by µV . The relevant dimensionless
groups are

κ =
µ̂

µ
(the viscosity ratio),

λ=
R0

R
(the radius ratio),

υ =
Ω0

4
3πR3

0
(the reduced volume).


(2.12)

Here, R0 =
√

A0/(4π) is the effective vesicle radius based on surface area. The
physical significance of these dimensionless groups is easily interpreted. The viscosity
ratio κ is a measure of the relative dissipation between the interior and exterior
fluids. The reduced volume υ varies between 0 and 1 and gauges the degree of
sphericity of the vesicle shape (a reduced volume of unity corresponds to a perfectly
spherical vesicle). Since the vesicle volume Ω0 and surface area A0 are assumed
to be fixed quantities, υ is a geometric parameter that is unaffected by flow and
membrane deformation. The radius ratio λ, which was introduced previously, relates
the characteristic dimension of the vesicle to the characteristic dimension of the
channel cross-section. Thus, λ is a measure for flow confinement: as λ increases, the
vesicle’s motion is more significantly hindered by vesicle–wall interactions.

Under typical experimental conditions, using water as the typical working fluid
(with some combination of dissolved electrolytes), µ ≈ µ̂ ≈ 1 mN s m−2 and one
may reasonably assume that κ ≈ 1. The square microchannels considered in this work
have dimensions R' 12 µm. Giant, unilamellar vesicles span a distribution of length
scales ranging from 1–100 µm. Thus, the radius ratio λ can take on a range of
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values. When prepared using electroformation, these vesicles are typically spherical
or nearly spherical, meaning that their reduced volume υ is of O(1). In this work,
reduced volumes in the range 0.85 6 υ 6 1 are considered.

It is apparent that no dimensionless group relating the intrinsic vesicular mechanics
to the strength of flow has been introduced, and this choice requires some clarification.
Namely, it is well known that vesicle membranes have intrinsic mechanical properties
that can compete with hydrodynamic stresses created by fluid flow. Among them, the
bending stiffness EB of the membrane is perhaps the most significant, as it directly
influences the shape through the normal component of the local stress balance on
the membrane. The effect of bending elasticity on vesicle motion through circular
tubes was previously investigated by two of the authors, who determined that this
effect is suppressed when λ or υ are large (Barakat & Shaqfeh 2018a,b). To gauge
the strength of bending forces relative to viscous forces, one has to compare EB to
the characteristic viscous energy scale µVR2. A typical bending modulus of giant,
unilamellar vesicles is EB ' 10−13 µN m (Evans & Needham 1987). Typical mean
fluid velocities in the microfluidic devices presented in § 5 are V = 1–5 cm s−1,
which gives a viscous energy scale µVR2

' 10−9 µN m. (One could make the
argument that the vesicle radius R0 is the proper length scale to use here. However,
the channel hydraulic radius R typically bounds the membrane radius of curvature,
making it the more suitable choice of length scale.) Thus, the dimensionless group
EB/(µVR2) = O(10−4) is small enough to justify the neglect of membrane bending
elasticity. Exceptional circumstances can arise when the local (deviatoric) curvature
of the vesicle membrane becomes large. However, these situations never arise for
vesicles that are ‘sphere-like’ (υ =O(1)), which are the subjects of the present study.

By neglecting bending elasticity, the only intrinsic characteristic of the vesicle
membrane is that it is an incompressible surface. Strictly speaking, the vesicle
membrane has a measurable dilatational modulus ED, akin to that of red blood
cells, and is typically approximately 200 mN m−1. The analogous viscous scale is
µV ' 10−2 mN m−1, giving a ratio ED/(µV) = O(104). This estimate suggests that
the membrane cannot stretch significantly in the flow regime of interest (Marmottant
& Hilgenfeldt 2003; Vitkova, Mader & Podgorski 2004). It is possible that large
extensional stresses can be created locally, e.g. when the separation between the
vesicle membrane and the duct wall becomes small. Under such circumstances, local
dilatation can change the membrane surface area. However, this change is bounded
by the maximally allowed areal strain (approximately 1 %–2 %) before the membrane
ruptures (Evans & Needham 1986). Thus, it is expected that the vesicle membrane
conserves surface area locally to within a reasonable degree of accuracy.

3. Boundary element method (BEM)
The initial boundary-value problem posed in the previous section is nonlinear and

spatially complex in three dimensions. Hence, direct solution requires an efficient
numerical method. A fully three-dimensional (3-D) simulation method to study
the motion of vesicles in conduit flow has been previously reported (Barakat &
Shaqfeh 2018a). Although the method has been used to study vesicle flow in circular
tubes, in fact it is completely generalizable to conduits of any cross-section because
singularities (of a priori unknown strength) are distributed over the wall surface. Thus,
the wall surface tractions f w must be determined simultaneously with the membrane
surface velocities us and membrane tension τ .

In brief, the vesicle and channel are placed in an Lx×Ly×Lz unit cell with periodic
boundary conditions applied at the bounding surfaces. The axial length Lx is chosen
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sufficiently large such that periodic images in the x-direction do not interact. The
Stokes equations (2.1) are reformulated as integral equations with built-in boundary
conditions for the membrane surface velocity us and wall surface traction f w:

∫
Ss

Aij(x, xs)

∫
Sw

Bij(x, xs)∫
Ss

Cij(x, xw)

∫
Sw

Dij(x, xw)

 [usi(x)
fwi(x)

]
dS(x)=

[
bj(xs)

bj(xw)

]
, (3.1)

where
Aij(x, x0)=

1+ κ
2

δ(x− x0)K ij(x)−
1− κ

8π
T ijk(x, x0)nk(x),

Bij(x, x0)=
1

8πµ
Gij(x, x0),

Cij(x, x0)=−
1− κ

8π
T ijk(x, x0)nk(x),

Dij(x, x0)=
1

8πµ
Gij(x, x0)


(3.2)

are the kernels, and

bj(x0)=−
1

8πµ

∫
Ss

fsi(x)Gij(x, x0) dS(x)+ 〈uj〉 (3.3)

is the source. Here, 〈u〉 is the volume-averaged velocity in the computational box, f s=

J f (x ∈Ss)K is the jump in surface traction across the membrane, G and T are the
periodic Green’s functions of Hasimoto (1959) and K is the principal-value tensor. (If
the field point x0 lies on a Lyapunov smooth surface, then K = I .)

The boundary integral equations (3.1) are solved using the collocation method
(Pozrikidis 1992). The vesicle membrane and duct wall are discretized using
unstructured, triangulated meshes and the unknown density fields are approximated
using piecewise linear shape functions along the boundary elements. The Green’s
functions G and T are evaluated on the boundaries using the smooth particle
mesh Ewald (SPME) algorithm (Saintillan, Darve & Shaqfeh 2005; Zhao et al.
2010). The resulting (dense) BEM matrix is solved using a matrix-free generalized
minimal residual method (GMRES) solver on distributed memory parallel computer
architectures.

In order to determine the membrane tension τ , the surface-area incompressibility
condition (2.4) is (approximately) satisfied in a predictor–corrector fashion as
described by Zhao & Shaqfeh (2013) ((2.9)–(2.12) in their paper). A relaxation
scheme is applied to control the relative change in total surface area as discussed
by Zhao, Spann & Shaqfeh (2011) ((2.20)–(2.21) in their paper). Once a converged
solution for f w, us and τ , is obtained, the Lagrangian surface mesh approximating
the membrane positions xs is advanced according to (2.6) using forward Euler time
stepping. When advancing (2.6), corrections to the tangential velocities are applied
(à la Loewenberg & Hinch 1996) in order to avoid distortion of mesh elements due
to in-plane shear. For more details on the numerical method (including validation
against previous simulations of Trozzo et al. (2015)), the reader is referred to Barakat
& Shaqfeh (2018a).

The present BEM implementation is completely general for arbitrary geometries,
and here it is applied to the study of polygonal ducts with N sides. Some of
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(a) (b)

(c)

FIGURE 2. Unstructured surface meshes. (a) Vesicle surface Ss for a sphere-like vesicle,
generated by subdividing an icosahedron. (b) Wall surface Sw for a straight conduit with
a square cross-section. (c) Wall surface Sw for a contraction–expansion channel; the inlet
and outlet are connected by a straight conduit with a square cross-section.

the unstructured meshes used in this paper are shown in figure 2 for N = 4
(square ducts). The vesicle surface mesh is obtained by subdividing an icosahedron
(figure 2a); for lower reduced volumes, this surface is mapped onto a prolate
spheroid. For the wall mesh, both a straight-channel geometry (figure 2b) as well as
a contraction–expansion geometry (figure 2c) are used. The latter type of geometry is
a realistic model for the microfluidic device used in the complementary experiments.
The contraction–expansion geometry will be used to determine the time to reach a
fully developed state, which can then be compared to results obtained for infinitely
long channels.

Since bending elasticity has been neglected and the viscosity ratio κ has been set
equal to unity, the family of solutions is parametrized by the reduced volume υ and
radius ratio λ. Experimental measurements of the dimensionless extra pressure drop
1p+R/(µV) typically require very small membrane–wall separation distances in order
to achieve a good signal-to-noise ratio. As will later be shown in § 5, the vesicles
studied experimentally are highly confined, at radius ratios λ much higher than that
which is easily determined via 3-D BEM simulation. Lubrication layers result in ill-
conditioning of the collocation matrix, and the hydrodynamic interaction between the
membrane and channel wall becomes difficult to resolve with acceptable accuracy.
This restriction suggests the use of an alternative approach in order to predict the
motion of vesicles at high confinement, which is the subject of the next section.

4. Lubrication theory

The lubrication approximation is a powerful method of regularizing the stress
singularity that emerges when the distance between two boundaries separated by a
viscous, flowing fluid becomes small compared to the lateral distance travelled by the
fluid (Batchelor 1967). It is expected that regions of high stress become concentrated
in these narrow gaps. A reasonable question to ask is, how large can the vesicle be
and still fit inside the duct without rupturing? Barakat & Shaqfeh (2018b) considered
this problem for a circular-tube geometry, showing that the maximum radius ratio λ∗
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is related to the reduced volume υ by the geometric constraint,

2υλ∗3 − 3λ∗2 + 1= 0 (circular tubes). (4.1)

Equation (4.1) is a simple cubic equation for λ∗ that can be derived by first assuming
the vesicle is a spherocylinder (the duct-conforming shape of the vesicle in a circular
tube), and then requiring that the radius of the spherocylinder be equal to the channel
hydraulic radius R. By computing the surface area and volume of this shape, it is
only a matter of algebra to arrive at (4.1). Significantly, the narrow-gap approximation
considered by Barakat & Shaqfeh (2018b) for closely fitting vesicles in circular tubes
is expected to be valid when the quantity (1− λ/λ∗) is small compared to unity.

For the square-duct geometry, the problem of determining the maximum vesicle
size to fit inside the duct is not so simple because a spherocylindrical vesicle shape
no longer conforms to the wall boundary. Nevertheless, one expects that there is
indeed a critical radius ratio λ∗ – at fixed reduced volume υ – that must be larger
than λ if the vesicle is to fit inside the duct. Furthermore, one expects that this
critical value λ∗ exceeds the analogous value for the circular-tube geometry, due to
the larger available cross-sectional area A×. It is not the objective of the present study
to calculate λ∗ exactly for any reduced volume, nor is it the objective to develop a
rigorous perturbation theory for (1− λ/λ∗)� 1. Without performing such calculations,
some of the salient features of a maximally sized vesicle in a square conduit can be
deduced from simple physical intuition:

(i) At the point of critical confinement λ = λ∗, portions of the vesicle membrane
make ‘apparent contact’ with the duct boundary. Other portions of the membrane
are ‘free’.

(ii) The area of contact A∗ between the membrane and the duct wall at λ = λ∗
depends on the reduced volume υ. For example, at υ = 1 (a spherical vesicle), it
is obvious that the critical radius ratio is λ∗ = 1 and membrane–wall contact is
concentrated at four points. As υ decreases from unity, these points of contact
grow into surfaces.

(iii) At some reduced volume υ below unity, the vesicle would presumably fill the
entire space and occlude flow through the duct. Complete occlusion is clearly
forbidden since the membrane would have infinite curvature at the corners of the
duct. Wong, Morris & Radke (1992), Wong, Radke & Morris (1995a,b) showed
that, for bubbles in polygonal capillaries, there is a cutoff length scale α−1 that
sets the surface curvature in the corner regions. A similar length scale most likely
exists for vesicles of low reduced volume, although this is beyond the scope of
the present study.

A conclusion that can be drawn from item (ii) above is that the applicability of the
lubrication approximation to the study of vesicle flow through polygonal ducts strongly
depends on the reduced volume υ and radius ratio λ, because these parameters affect
the available contact area A∗. Significantly, when υ is close to unity, then the vesicle
is quasi-spherical and the region of lubrication is concentrated at points. Since the
study of O’Neill & Stewartson (1967) on the motion of rigid spheres translating
parallel to plane walls, it has been well known that lubrication theory provides an
accurate description of the local flow in the region of lubrication. However, the
theory provides an inaccurate measure of global figures of merit (e.g. forces and
force moments on a particle) when the region of lubrication is concentrated at a
point and not a surface. The failure of lubrication theory can be attributed to the
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strength of the surface force density (measured in units of µV/R) in comparison with
the surface area (measured in units of R2). In the region of lubrication, the contact
area A∗ is small, say O(ε) with ε = 1 − λ/λ∗ � 1, whereas the surface traction
diverges, say with strength O(ε−1). The overall force moment is then O(1). In the
bulk region (outside the lubrication zone), the traction is O(1) and the particle surface
area is also O(1), giving an additional O(1) contribution to the force moment. Since
the lubrication and bulk regions are of comparable magnitude, both are significant to
the calculation of integral hydrodynamic quantities. In relation to the present study,
this means that lubrication theory is expected to supply a poor approximation of the
dimensionless extra pressure drop 1p+R/(µV) – which, by (2.10), is computed from
a force integral over the wall surface – when the reduced volume υ is very close to
unity.

The aforementioned errors introduced through the lubrication approximation are
eliminated when the duct cross-section is not a regular polygon but rather a circle.
In the latter case, the region of lubrication between a large spherical particle and the
duct boundary is concentrated at a contour (not a point) spanning the circumference
of the cross-section. Consequently, a sphere translating through a circular tube has
O(ε1/2) contact area with the wall and the resulting force moment is O(ε−1/2), a
singular contribution for ε � 1. For this reason, lubrication theory can provide an
accurate approximation of the dimensionless extra pressure drop 1p+R/(µV) if the
cross-section of the channel is circular and the vesicle is sufficiently large. The
success of the lubrication approximation in predicting vesicle motion within the
circular-tube geometry was previously verified by two of the authors through direct
comparison to BEM simulations (Barakat & Shaqfeh 2018a).

The above scaling arguments hold if υ is close to unity – that is, the vesicle is
nearly spherical. However, the situation again qualitatively changes when υ < 1. In
this case, the apparent contact area A∗ is O(1), provided that λ is sufficiently close to
λ∗. The lubrication contribution to the integral force moment is then O(ε−1), rather
than O(ε−1/2) as in the case for a quasi-spherical vesicle. This result was shown by
Barakat & Shaqfeh (2018b) for vesicles in circular tubes – the dimensionless extra
pressure drop 1p+R/(µV) was shown to diverge like ε−1/2 for spherical vesicles and
like ε−1 for spherocylindrical vesicles at conditions of maximal confinement. In both
of these cases, the ‘excess’ relative velocity U/V − 1 is O(ε) and always positive,
with a coefficient that depends on the vesicle shape at steady state. For vesicles
in the square-duct geometry considered in the present work, it is expected that
lubrication theory provides the leading-order approximation, with errors that diminish
as the apparent-contact area A∗ increases (i.e. the reduced volume υ decreases).
However, one also expects the membrane surface flow to be non-uniform, unlike in
the circular-tube geometry. This effect can have two significant consequences. For
one, the presence of non-uniform surface flow changes the shear stresses in the gap
and hence the dimensionless extra pressure drop 1p+R/(µV). The ability of the flow
to bypass the vesicle through the corner regions suggests that the extra pressure drop
will be weaker in the square-duct geometry as compared to circular tubes. Second,
the backflow in the region of lubrication indicates the possibility of the excess relative
velocity U/V − 1 being negative. That is to say, a sufficiently large vesicle could
travel at a velocity U slower than that of the mean flow V in a square duct.

The above discussion motivates the development of a lubrication theory for the
theoretical problem posed in § 2, which is the primary focus of this section. A similar
approach to the one taken here was adopted in a previous study by two of the authors
for circular tubes (Barakat & Shaqfeh 2018a). In that study, the geometry considered
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was axisymmetric and the resulting equations coupling fluid flow to shape deformation
were one-dimensional along the tube axis x. In the present work, symmetry breaking
induced by the duct geometry precludes the use of an axisymmetric theory. Rather,
one must consider flow in both the axial and circumferential directions.

4.1. Formulation

Cylindrical coordinates (ρ, φ, x) are conveniently adopted here, with ρ =
√

y2 + z2

being the radial distance, φ= arctan (z/y) the azimuthal angle and x the axial distance.
The theory will be generally formulated for a polygonal duct with N sides at steady
state, assuming that the system has N-fold symmetry (i.e. the geometry possesses
reflectional symmetry at the planes φ = jπ/N, j= 1, 2, . . . , 2N). Unlike in § 3, where
the vesicle was given a Lagrangian representation, in the forthcoming development the
surface position vector xs will be given the Eulerian representation,

xsi(φ, x)= xδ1i + ρs(φ, x) cos φδ2i + ρs(φ, x) sin φδ3i, (4.2)

where ρ = ρs(φ, x) defines the location of the vesicle membrane in space. The basic
assumption of lubrication theory is to neglect components and gradients of velocity in
the φ and x directions. This assumption is rooted in assuming that spatial variations
in the velocity field are most rapid in the transverse (ρ) direction as compared to the
lateral (φ, x) directions. In this approximation, the relevant velocity components uφ
and ux are governed by the simplified equations of motion,

∂p
∂ρ
= 0, (4.3a)

∂p
∂φ
=µρ

∂

∂ρ

(
1
ρ

∂

∂ρ
(ρuφ)

)
, (4.3b)

∂p
∂x
=
µ

ρ

∂

∂ρ

(
ρ
∂ux

∂ρ

)
, (4.3c)

with boundary conditions (the no-slip condition on the wall and tangential stress
balance condition on the membrane),

ux = uφ = 0 at ρ = R(φ), (4.4a)

µρ
∂

∂ρ

(
uφ
ρ

)
=−

∂τ

∂sφ
at ρ = ρs(φ, x), (4.4b)

µ
∂ux

∂ρ
=−

∂τ

∂sx
at ρ = ρs(φ, x). (4.4c)

Here, dsφ =
√
ρ2

s + (∂ρs/∂φ)2 dφ and dsx =
√

1+ (∂ρs/∂x)2 dx are the arc lengths
along the azimuth and channel axis, respectively. The local duct radius Rφ(φ) is given
by

Rφ(φ)= R sec φ, 0 6 φ 6
π

N
, (4.5a,b)

where N = 4 for a square duct. Due to symmetry, one need only consider the section
of the domain bounded by φ = 0 and φ = π/N. It is expected that these equations
supply a good approximation of the local flow conditions provided that |∂ρs/∂x| and
|∂ρs/∂φ| are not very large.
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The pressure p must be determined by conserving volume in the suspending fluid.
(Consideration of the fluid inside the vesicle is immaterial, since the shear rates in the
suspending fluid are presumably much larger than those in the interior fluid.) Depth-
averaging the equation of continuity and applying the kinematic condition for a steady
vesicle shape (n · u= 0 on the membrane) yields a local mass balance condition,

∂

∂φ

(qφ
R

)
+
∂qx

∂x
= 0, (4.6)

where

qφ =
∫ Rφ(φ)

ρs(φ,x)
Ruφ dρ, qx =

∫ Rφ(φ)

ρs(φ,x)
ρ(ux −U) dρ (4.7a,b)

are the leakback fluxes (here, the factor of R is introduced arbitrarily so that qφ and
qx have the same dimensions). Multiplying (4.6) by dφ, integrating from φ= 0 to 2π
and applying periodicity conditions yields a macroscopic mass balance,∫ 2π

0
qx dφ =

∫ π/N

0
2Nqx dφ =Q− A×U = A×(V −U), (4.8)

where

A× =
∫ π/N

0
NR2

φ dφ (4.9)

is the cross-sectional surface area. Equation (4.8) holds for all −L6 x6 0, where L is
the length of the vesicle (a free boundary). Obviously, the velocities U and V cannot
be specified independently. Rather, by specifying one, the other must be determined
as part of the solution to the boundary-value problem. Here, it is most convenient to
specify U a priori and determine V a posteriori.

The membrane tension τ must also be determined, by conserving surface area
locally on the membrane. This requirement is enforced by (2.4), which when written
in cylindrical coordinates (with n · u= 0 on the membrane) becomes

1
Gs

∂

∂φ

(
Gsūsφ

ρs

)
+

1
Gs

∂

∂x
(Gsūsx)= 0, (4.10)

where Gs =
√
ρ2

s [1+ (∂ρs/∂x)2] + (∂ρs/∂φ)2 is the surface metric and

ūsφ = uφ|ρ=ρs(φ,x), ūsx = (ux −U)|ρ=ρs(φ,x) (4.11a,b)

are the membrane slip velocities. Multiplying (4.10) by Gs dφ, integrating from φ= 0
to 2π and applying periodicity conditions gives∫ 2π

0
Gsūsx dφ =

∫ π/N

0
2NGsūsx dφ = 0. (4.12)

The right-hand side of (4.12) has been set equal to zero by the requirement that the
vesicle remain stationary in the moving reference frame. This condition holds for all
−L 6 x 6 0.

The equations (4.10)–(4.12) are exact at steady state, but require as input the
local flow field u (cf. 4.7 and 4.11). The lubrication approximation allows one to
analytically compute the flow field by considering only the dominant shear stresses
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in the xρ and φρ planes. Thus, expressions for the components of the leakback flux
vector q and membrane slip velocity vector ūs can be obtained directly by integrating
(4.3)–(4.4) with respect to ρ:

qφ
R
=

m(qp)
φ

ρs

∂p
∂φ
+m(qτ)

φ

∂τ

∂sφ
, qx =m(qp)

x
∂p
∂x
+m(qτ)

x
∂τ

∂sx
−

1
2

U(R2
φ − ρ

2
s ), (4.13a)

ūsφ

ρs
=

m(up)
φ

ρs

∂p
∂φ
+m(uτ)

φ

∂τ

∂sφ
, ūsx =m(up)

x
∂p
∂x
+m(uτ)

x
∂τ

∂sx
−U, (4.13b)

where

m(qp)
φ =−

R3
φ

8µ

[
ρs

Rφ
−
ρ5

s

R5
φ

+
4ρ3

s

R3
φ

log
(
ρs

Rφ

)]
, (4.14a)

m(qτ)
φ =−

R2
φ

4µ

[
ρ2

s

R2
φ

−
ρ4

s

R4
φ

+
2ρ2

s

R2
φ

log
(
ρs

Rφ

)]
, (4.14b)

m(qp)
x =−

R4
φ

16µ

[(
1−

3ρ2
s

R2
φ

)(
1−

ρ2
s

R2
φ

)
−

4ρ4
s

R4
φ

log
(
ρs

Rφ

)]
, (4.14c)

m(qτ)
x =

R3
φ

4µ

[
ρs

Rφ
−
ρ3

s

R3
φ

+
2ρ3

s

R3
φ

log
(
ρs

Rφ

)]
, (4.14d)

m(up)
φ =

Rφ
4µ

[
ρs

Rφ
−
ρ3

s

R3
φ

+
2ρs

Rφ
log
(
ρs

Rφ

)]
, (4.14e)

m(uτ)
φ =

1
2µ

(
1−

ρ2
s

R2
φ

)
, (4.14f )

m(up)
x =−

R2
φ

4µ

[
1−

ρ2
s

R2
φ

+
2ρ2

s

R2
φ

log
(
ρs

Rφ

)]
, (4.14g)

m(uτ)
x =−

ρs

µ
log
(
ρs

Rφ

)
(4.14h)

are the mobility functions. Clearly, these functions depend only on µ, ρs and Rφ .
Inserting (4.13) into (4.6) and (4.10) yields two second-order partial differential
equations (PDEs) for the unknown fields p and τ :

∂

∂φ

(
m(qp)
φ

ρs

∂p
∂φ

)
+
∂

∂x

(
m(qp)

x
∂p
∂x

)
+
∂

∂φ

(
m(qτ)
φ

∂τ

∂sφ

)
+
∂

∂x

(
m(qτ)

x
∂τ

∂sx

)
=
∂

∂x

[
1
2

U(R2
φ − ρ

2
s )

]
, (4.15)

∂

∂φ

(
Gsm

(up)
φ

ρs

∂p
∂φ

)
+
∂

∂x

(
Gsm(up)

x
∂p
∂x

)
+
∂

∂φ

(
Gsm

(uτ)
φ

∂τ

∂sφ

)
+
∂

∂x

(
Gsm(uτ)

x
∂τ

∂sx

)
=
∂

∂x
(GsU). (4.16)

Although these equations are linear in p and τ , the boundary-value problem is
nonlinear because the membrane radius ρs must also be determined as part of the
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solution. The governing PDE for ρs is the normal stress balance condition on the
membrane:

1
G3

s

{
ρs
∂2ρs

∂x2

[
ρ2

s +

(
∂ρs

∂φ

)2
]
+ ρs

∂2ρs

∂φ2

[
1+

(
∂ρs

∂x

)2
]
− 2ρs

∂ρs

∂x
∂ρs

∂φ

∂2ρs

∂x∂φ

−

(
∂ρs

∂φ

)2
}
−

1
Gs
=

p
τ
. (4.17)

The left-hand side of (4.17) is twice the mean curvature 2H expressed in cylindrical
coordinates. The reference pressure is chosen to be the interior vesicle pressure
(assumed spatially homogeneous), so that the pressure p the right-hand side of (4.17)
(approximately) reflects the jump in the normal component of the membrane surface
traction.

Although, strictly speaking, the lubrication equations (4.15)–(4.17) are only valid
in regions where the bounding surfaces are nearly parallel, two of the authors have
previously found success in extending these equations outside the lubrication region
under axisymmetric conditions (Barakat & Shaqfeh 2018a). There is substantial
literature precedent for this solution methodology in application to red blood cells
(Secomb et al. 1986) and bubbles (Ratulowski & Chang 1989) in axisymmetric
geometries. The basic justification for applying (4.15)–(4.17) outside the regions of
lubrication hinges on the assumption that errors made in approximating the flow field
outside the lubrication zone are of little consequence to the shape deformation and
force moment integrals. This assumption breaks down when the region of closest
separation between the vesicle membrane and the duct wall degenerates to points,
as was discussed at the beginning of this section. Thus, equations (4.15)–(4.17) are
applied over the whole domain −L 6 x 6 0 and 0 6 φ 6π/N.

Equations (4.15)–(4.17) are nonlinear, elliptic PDEs for the fields p, τ , and ρs. In
applying these equations to the whole domain, boundary conditions are required at the
planes x= 0, x=−L, φ = 0 and φ =π/N. Simple geometric considerations yield the
following conditions:

at φ = 0 :
∂ρs

∂φ
= 0,

∂p
∂φ
= 0,

∂τ

∂φ
= 0, (4.18a)

at φ =
π

N
:
∂ρs

∂φ
= 0,

∂p
∂φ
= 0,

∂τ

∂φ
= 0, (4.18b)

at x= 0 : ρs = 0,
ρs

Gs

∂ρs

∂x
=−1,

∂

∂φ

(p
τ

)
= 0, (4.18c)

at x=−L : ρs = 0,
ρs

Gs

∂ρs

∂x
=+1,

∂

∂φ

(p
τ

)
= 0. (4.18d)

The integral conditions (4.8) and (4.12) are applied at some value of x (say, x=−L/2)
in order to conserve the total rate of flow of volume and surface area. The vesicle
volume Ω0 and surface area A0 are related to ρs by the integral equations

Ω0 =

∫ π/N

0

∫ 0

−L
Nρ2

s dx dφ, (4.19)

A0 =

∫ π/N

0

∫ 0

−L
2NGs dx dφ, (4.20)
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which must be satisfied simultaneously with (4.8), (4.12) and (4.15)–(4.18). The
boundary-value problem is now closed. Once a solution for the fields p, τ and ρs
is obtained, the extra pressure drop 1p+ is approximated by the difference in total
pressure at the planes tangent to the front and rear ends of the vesicle:

1p+ '
1

A×

∫ π/N

0
NR2

φ(p|x=−L − p|x=0) dφ − LKhydA×V. (4.21)

The second term on the right-hand side is the Poiseuille pressure drop across a vesicle
length L. For a circular tube of radius R, this contribution is equal to 8µVL/R2. For
a square duct (N = 4), it is 7.12µVL/R2.

It is noteworthy that, although the derivation above was performed for a conduit
whose cross-section is a polygon with N sides, in principle this derivation could be
applied to any cross-section. The applicability of the lubrication solution, however, is
inherently dependent on the validity of neglecting additional viscous stresses in (4.3)–
(4.4). The limitations of this assumption are discussed above.

As is common for problems in cylindrical coordinates, polar singularities occur at
x= 0 and −L, resulting in a divergence of the membrane slope |∂ρs/∂x| ∼ |x|−1/2 near
these points. Following Wong et al. (1992), a coordinate transformation removes the
polar singularity:

x=−
L
2
(1− cos ξ), ξ = arccos

(
1+

2x
L

)
, (4.22a,b)

where 0 6 ξ 6 π. The coordinate transformation (4.22) has the additional benefit of
clustering grid points near x = 0 and x = −L, which in turn enables resolution of
sharp gradients near the poles. Conversion between x- and ξ -operations (i.e. derivatives
and integrals) is easily achieved via the chain rule. In the transformed domain, the
polar singularity is removed by application of l’Hôpital’s rule (Wong et al. 1992).
However, two additional concerns remain. Firstly, removing the polar singularity does
nothing to alleviate the additional stress singularity that results from the failure of the
lubrication approximation at the poles. Although this latter kind of singularity cannot
be removed, it is of little consequence to the solution of the boundary-value problem.
The stresses computed via lubrication theory diverge within a very small region near
the front nose and rear tail of the vesicle, and hence their overall contribution to
the shape deformation and force moment integrals is negligible. Secondly, the one-
to-one mapping between x and ξ excludes the possibility of multivalued solutions to
the boundary-value problem. Such solutions can occur, for instance, when the vesicle
develops concave curvature in the rear end (the so-called ‘parachute shape’). This
restriction is somewhat mild, however, as the vesicles considered in the present work
have reduced volumes in the range 0.85 6 υ 6 1. Such vesicles are approximately
spherical and do not typically develop concave curvature under flow.

Equations (4.8), (4.12) and (4.15)–(4.20) were solved using the finite difference
method. The poles ξ = 0 and π were excluded from the domain in order to avoid the
stress singularity at these points. The membrane shape at the poles was approximated
by a spherical section with constant curvature. The 2-D domain was discretized
into a uniform grid and second-order accurate spatial difference operators were
used to approximate derivatives and integrals with respect to φ and ξ . Applying the
difference analogy to the governing equations (4.8), (4.12) and (4.15)–(4.20) results in
a system of nonlinear algebraic equations, which was subsequently solved iteratively
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BEM simulation
Lubrication theory
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FIGURE 3. Relative velocity U/V plotted against the radius ratio λ for υ = 0.99 and (a)
N = 4 (square), (b) N = 6 (hexagon), (c) N = 12 (dodecagon) and (d) N→∞ (circle).
The symbols are the BEM simulations, while the solid lines are the predictions from
lubrication theory.

using a Newton–Raphson procedure. For each Newton step, the Jacobian matrix
was pre-computed analytically and subsequently discretized using finite differences.
Iteration proceeded until the merit function to be zeroed fell below 10−6 or the
Newton step in the descent direction fell below 10−6. Starting from some initial
guess (e.g. solutions of the analogous axisymmetric problem considered by Barakat &
Shaqfeh (2018a)), convergence was typically achieved in under 10 iterations. A family
of solutions parametrized by υ and λ was obtained using the continuation method.
Typically, higher spatial resolution was necessary in order to achieve convergence for
large values of λ. For further details on the numerical method, the reader is referred
to Barakat (2018).

4.2. Error analysis
The lubrication approximation is not an exact solution of Stokes’ equations of motion.
Viscous stresses induced by velocity gradients neglected in the approximation can
contribute to the momentum flux in the x and φ directions. These stresses are
not expected to contribute significantly when the flow is axisymmetric. For the
non-axisymmetric flow in square ducts, these stresses are expected to play a more
significant role. There are large portions of the domain (e.g. the corners and the
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FIGURE 4. Dimensionless extra pressure drop 1p+R/(µV) plotted against the radius ratio
λ for υ = 0.99 and (a) N = 4 (square), (b) N = 6 (hexagon), (c) N = 12 (dodecagon) and
(d) N→∞ (circle). The symbols are the BEM simulations, while the solid lines are the
predictions from lubrication theory.

ends of the vesicle) where the gap separating the membrane and the duct wall
is not narrow, nor is it slowly varying in the axial or circumferential directions.
Consequently, while the local flow field in the narrow-gap region is expected to be
well approximated by the lubrication theory, the macroscopic mass and momentum
balances may incur substantial errors due to neglected viscous stresses, particularly
for motion tangential to the wall (less so for normal motion, which is not considered
here) (O’Neill & Stewartson 1967). These errors are expected to decrease if the
flow becomes axisymmetric, the narrow gap thins, or the apparent-contact area A∗

increases.
The macroscopic mass and momentum balances lead directly to the integral figures

of merit: the relative velocity U/V and dimensionless extra pressure drop 1p+R/(µV).
In order to estimate the errors made in the lubrication approximation, these quantities
were computed at different values of N (polygonal ducts with varying number of
edges in a cross-section) and compared to the analogous BEM simulations. Results
for the relative velocity U/V and dimensionless extra pressure drop 1p+R/(µV) are
shown in figures 3 and 4, respectively, for N= 4 (square cross-section), 6 (hexagonal),
12 (dodecagonal) and ∞ (circular). From comparing the two methods, it is clear that
the lubrication theory underpredicts both the relative velocity and extra pressure
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Pin

Vesicle Test channel

Reference channel

Comparator

ÎY
Flow direction

Pin

FIGURE 5. Working principle of the microfluidic manometer. Equal driving pressures are
applied to a test channel (containing a single vesicle) and a reference channel (containing
a clear fluid). The co-flowing fluids meet at a downstream comparator, forming a fluid–
fluid interface. In the absence of a vesicle, the interface is flat (parallel to the streamwise
direction). In the presence of a vesicle, a measurable displacement 1Y is observed due
to the excess flow resistance in the test channel.

drop. The error is most significant for the square cross-section, and decreases as N
increases until the system approaches the cylindrically symmetric system. For the
circular-tube case, the error in the relative velocity nearly vanishes, whereas there
remains a very small error in the extra pressure drop. This error is likely due to the
approximation (4.21), which neglects wall stresses upstream and downstream of the
ends of the vesicle.

From figures 3 and 4, one may reasonably conclude that the errors in the lubrication
approximation arise from the neglect of velocity gradients in the azimuthal direction
(e.g. ∂ux/∂φ and ∂uφ/∂φ) in the equations of motion and stress conditions. These
terms are not necessarily small and should play a significant role when the duct is
not axisymmetric. However, one expects that these terms become less important as the
vesicle becomes more confined. As the radius ratio λ increases, the vesicle fills the
entire cross-section and the gap separating the membrane from the duct wall becomes
very small in certain regions. Velocity gradients with respect to the radial distance
(e.g. ∂ux/∂ρ and ∂uφ/∂ρ) are dominant in this case, and lubrication theory is expected
to predict the singular contribution to integral force moments.

Unfortunately, it is not possible to compare the lubrication theory to the BEM
simulations at very high confinement, since the BEM calculations become prohibitively
expensive in this regime. Instead, the lubrication theory is compared to experimental
measurements at similarly high confinement (delayed until § 6). Details of the
experimental methods are given in the next section.

5. Experimental
A microfluidic manometer method, previously used to study the extra pressure drop

across single droplets (Vanapalli et al. 2009) and cells (Abkarian, Faivre & Stone
2006; Khan & Vanapalli 2013; Khan et al. 2017) was adopted to simultaneously
measure the relative velocity U/V and dimensionless extra pressure drop 1p+R/(µV).
The manometer principle (illustrated in figure 5) involves applying a constant pressure
at the inlets of the so-called reference and test channels, and recording the fluid–fluid
interface deflection in the comparator region downstream as the vesicle passes through
the test channel (Groisman, Enzelberger & Quake 2003; Vanapalli et al. 2007).

Vesicles were synthesized using standard electroformation methods (Angelova
et al. 1992; Ahmmed et al. 2018). The formulation consisted of 1-stearoyl-2-
oleoyl-sn-glycero-3-phospho-choline (SOPC) and cholesterol at 1:1 molar ratio,
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Vesicle flow through a square microchannel 467

or SOPC:Chol. The internal and suspending phase of the vesicles was 0.11 M
sucrose and 0.12 M glucose solution respectively, with viscosities ≈1 mN s m−2.
Due to optical limitations, the reduced volume υ could not be accurately measured
during the microfluidic experiments. Literature precedent suggests a distribution of
reduced volumes with a mean value of υ = 0.98 for SOPC:Chol vesicles prepared
by electroformation (the standard deviation was not reported) (Pommella et al. 2015).
It is expected that, without the addition of electrolytes to induce a small osmotic
pressure difference, the vesicles prepared will have reduced volumes in the range
0.85 6 υ 6 1. The possibility of multilamellarity was not accounted for in this study.

The microfluidic manometer devices were fabricated using standard soft lithography
techniques (Xia & Whitesides 1998). The manometer design consisted of two square
channels of width × height × length = (12.6 ± 0.6) × (12.8 ± 0.7) × 330 µm, which
meet downstream to form a comparator region of width 110 µm (figure 5). Vesicles
were introduced into the test channel; in the reference channel, a 0.12 M glucose
solution with a trace amount of black food dye was used to facilitate visualization
of the deflected interface downstream. The pressure gradients in the channels were
controlled using an electronic pressure controller system (MFCS, Fluigent Inc.).
Imaging was conducted on an inverted microscope (IX 71, Olympus Inc.) in the
phase contrast mode and images were acquired with a CMOS camera (Phantom
v310, Vision Research) at an exposure time of 50 µs and a frame rate of 2000 f.p.s.
The effective pixel size for this optical setup is 0.97 µm.

Prior to the vesicle experiments, a calibration curve was generated to relate the
extra pressure drop 1p+ to the interface displacement 1Y , by varying the test channel
driving pressure and capturing the corresponding interface displacement while keeping
the reference channel driving pressure fixed. The interface displacement was obtained
from the captured images by fitting an error function to the intensity values of a
vertical row of pixels 10 µm away from the tip, where the two fluids first meet in
the comparator. The true interface position was taken to be the midpoint between the
lowest and highest grey-scale regions of the fitted curve. When a vesicle occludes the
test channel, the flow rate in it is reduced and therefore the interface is displaced in
the comparator region. The calibration curve enables one to directly map 1Y to 1p+.
One limitation of this method, as was mentioned at the end of § 3, is that the pressure
drop must be sufficiently high in order to achieve a measurable deflection. As such,
measurements of 1p+ could only be obtained for sufficiently large radius ratios λ
(typically greater than unity).

The vesicle translational velocity U was measured manually using the ImageJ
software package (v.1.6.0-24, NIH). For each experiment, the time taken for a vesicle
to travel the channel length (300 µm) was recorded provided that the vesicle’s
motion was steady. Using this transit time and travel distance, the vesicle velocity
was computed (maximum error <3 %, based on image resolution).

Independent experiments were performed in order to determine the mean fluid
velocity V during vesicle transport through the test channel. In the absence of
vesicles, a flow rate Q was imposed using a syringe pump (PHD 2000, Harvard
Apparatus) in the test channel, with a constant pressure imposed at the inlet of the
reference channel. The interface displacements were recorded as a function of the
pump flow rate. Therefore, using the two curves 1p+ versus 1Y and Q versus 1Y ,
a one-to-one mapping between 1p+ and Q was obtained. Using this relationship,
the mean fluid velocity V in the presence of the vesicle was determined. The errors
incurred due to the fact that the vesicle-free fluid has a smaller effective viscosity
are expected to be small, since the additional viscosity imparted by the vesicle to
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the fluid is an O(c) contribution (c� 1 being the volume fraction occupied by the
vesicle in the fluid system). In all of the reported experiments, the applied pressure
drop in the manometer was such that mean fluid velocities and shear rates (∼V/H)
were 1.15–2.12 cm s−1 and 750–1700 s−1, respectively.

To calculate the radius ratio λ, the size of each vesicle was measured prior to
entering the constriction (where a vesicle is assumed to have a ‘pancake’ shape due to
the converging duct cross-section). Specifically, the projected area of the vesicle was
measured using ImageJ and fitted to a circle (measurement error <3 % due to image
resolution); the volume and surface area were estimated by assuming the vesicle to
be a body of revolution, as described by Vuong & Anna (2012). From the surface
area, the equivalent vesicle radius R0 was computed and normalized by the channel
hydraulic radius R in order to obtain the radius ratio λ.

As stated previously, the reduced volume υ could not be accurately measured
during the experiments. Estimating υ based on the ‘pancake’ model described above
typically results in an overestimation (reduced volumes very close to unity). When
the vesicle enters the narrow channel, the aspect ratio L/(2R) is typically larger than
unity, indicating that the vesicle is aspherical under confinement. The reduced volume
was approximated by measuring the aspect ratio L/(2R) and using the lubrication
solutions of the vesicle shape at near-critical confinement in order to relate L/(2R)
to υ (discussed further in § 6.3, below).

A representative experiment is shown in figure 6. Figure 6(a) shows time-stamped
images of a SOPC:Chol vesicle translating through the test channel and the induced
interface deflection. From observation, the vesicle deforms at the constriction entrance
but does not slow down as it penetrates into the channel. Figure 6(b) shows the
associated time evolution of the relative velocity U/V and dimensionless extra
pressure drop 1p+R/(µV) as the vesicle translates through the channel. As expected,
the extra pressure drop is nearly zero prior to the vesicle reaching the constriction
entrance. Then, there is a sharp rise in the extra pressure drop, which reaches a
maximum at a few channel diameters away from the constriction entrance. This
maximum in the extra-pressure-drop signal is maintained, producing a plateau
region until the vesicle reaches the channel exit. Thereafter, the extra pressure
drop decreases and actually appears to be negative, since the presence of vesicle in
the comparator region perturbs the interface location. For the purposes of comparing
the measurements to the theoretical predictions, the mean value of the extra pressure
drop in the plateau region was evaluated. The fluctuations in the plateau region were
<5 % for a large vesicle (λ > 1.3) and 5 %–10 % for smaller vesicles (1 < λ < 1.3).
The time evolution of the relative velocity U/V mirrors that of the extra pressure
drop except that the rise in velocity occurred slightly earlier than the extra pressure
drop. This delay is likely due to the response time of the manometer.

6. Discussion of results
In this section, the main results from the BEM simulations, lubrication theory and

microfluidic experiments are presented for the motion of vesicles through square
conduits. In § 4.2, it was shown that the lubrication approximation yields more
significant errors in the square-duct geometry than in the circular-tube geometry,
due to the importance of azimuthal stresses neglected in the approximation (these
errors essentially disappear as the symmetry of the duct increases, i.e. as N→∞).
However, it is expected that this approximation yields the correct singular contribution
to the relative velocity U/V and dimensionless extra pressure drop 1p+R/(µV) as
λ approaches a maximum. This information will be crucial when comparing to the
experimental results.
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FIGURE 6. (a) Time-stamped images showing vesicle motion in the test channel and the
concomitant interface deflection. The test channel is approximately 12.6 µm wide and
330 µm long. (b) Time evolution of the relative velocity U/V and dimensionless extra
pressure drop 1p+R/(µV) for a vesicle of reduced volume υ near unity (λ= 1.56).

6.1. Vesicle flow through a contraction
To begin, the BEM simulations for straight channels with square cross-section are
compared to the contraction–expansion simulations. The goal here is to correlate the
instantaneous vesicle confinement, relative velocity U/V , and dimensionless extra
pressure drop 1p+R/(µV), as well as quantify the time to reach steady state.

Figure 7 shows BEM simulation results for a nearly spherical vesicle (reduced
volume υ = 0.99) entering a constriction, at two different radius ratios (λ = 0.6 and
0.8). The mesh geometry (shown in figure 2c) has the same dimensions as the ‘test
channel’ of the microfluidic manometer (figures 5 and 6). The straight-channel portion
of the geometry is sufficiently long such that the expansion flow downstream does
not affect the vesicle motion. In the experiment shown in figure 6, the radius ratio
λ is higher than that reported in figure 7. High-confinement simulations require an
exorbitant number of mesh elements and are prohibitively costly with the current
BEM implementation. As such, one should not directly compare figure 7 to figure 6.
Nevertheless, the simulations can give insight into the transient effects at the entrance
of the manometer, at lower confinement.
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FIGURE 7. (a) Time sequence of a vesicle (reduced volume υ = 0.99) passing through a
square constriction channel, as computed via BEM simulation. The left and right columns
correspond to λ= 0.6 and 0.8, respectively. (b) Relative velocity U/V and dimensionless
extra pressure drop 1p+R/(µV) plotted against the dimensionless time tV/R for υ = 0.99
and λ= 0.6, 0.8. The dashed, horizontal lines correspond to the steady-state results for an
infinitely long, square conduit.

The vesicle shape (figure 7a) is tracked together with the relative velocity U/V and
dimensionless extra pressure drop 1p+R/(µV) (figure 7b). As the vesicle approaches
the entrance of the narrow channel, it accelerates due to the converging flow field; the
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extra pressure drop rises simultaneously. At tV/R = 0, the vesicle enters the square
duct and the pressure drop fluctuates; these fluctuations are dampened as confinement
increases. Steady state is achieved after the vesicle travels several channel radii
(roughly tV/R ' 3), which is consistent with the experiment shown in figure 6
(physically, this distance is approximately 40 µm for a channel hydraulic radius
of 12 µm). Increasing the flow confinement (λ) results in a slight reduction in the
relative velocity U/V and a dramatic increase in the dimensionless extra pressure drop
1p+R/(µV). Similar trends are observed for lower reduced volumes (not shown here).

Quéguiner & Barthès-Biesel (1997) performed BEM simulations of a capsule (a
model for a red blood cell) entering an axisymmetric contraction–expansion geometry.
These authors modelled the capsule membrane as either a neo-Hookean solid or as
an incompressible sheet; the latter is equivalent to the membrane model used in the
present study. They tracked the pressure drop as a function of distance travelled by the
capsule and showed that a steady state was achieved after several channel radii, as is
shown here. To the best of the authors’ knowledge, the present simulations are the first
to model a vesicle flowing through rectangular contraction–expansion geometry, which
is fully three-dimensional and hence cannot be investigated using the axisymmetric
boundary integral equations.

6.2. Steady vesicle shapes, surface tractions and surface velocities
Figures 8–11 show the theoretical predictions for the vesicle shape in square conduits
at two different reduced volumes (υ = 0.99 and 0.90) and a range of radius ratios λ.
The images are ordered (top-to-bottom) with increasing radius ratio λ; thus, vesicle
confinement increases down the page. The colours indicate the normal component
of the membrane surface traction jump (i.e. the ‘total pressure’), fsn = n · fs. Larger
values of fsn (towards positively valued numbers) indicate higher pressures in the
suspending fluid phase. The results shown in figures 8 and 10 were obtained using
BEM simulations; those shown in figures 9 and 11 were obtained using lubrication
theory. In order to compare results from the BEM and lubrication theory, one may
juxtapose figures 8(d) and 9(a) (for υ = 0.99, λ = 0.9), as well as figures 10(e)
and 11(a) (for υ = 0.90, λ = 1.1). Clearly, the two methods produce qualitatively
similar shapes and pressure distributions. Quantitative differences in the computed
pressures are also observed.

Figures 8(a), 10(a) show that the pressure distribution in the vicinity of the vesicle
surface is nearly axisymmetric at low flow confinement. Were the vesicle to shrink to
a point, local analysis of the flow field in a square duct yields an axisymmetric flow
field at the channel centreline. Finite-sized vesicles sample a non-axisymmetric flow
field. Figure 10(a,b) shows a fourfold symmetric ‘parachute shape’ for υ = 0.90, with
four lobes appearing at the rear end. This is not observed in circular tubes, wherein
a vesicle of this reduced volume would develop an axisymmetric parachute shape.

As the confinement is increased, the pressure distribution becomes increasingly
asymmetric with ‘hot spots’ (regions of high pressure) localized at four discrete areas
where the gap widths are narrow. These hot spots become less localized at lower
reduced volume (comparing υ= 0.99–0.90), indicating that there is a smaller variation
in the local distance between the vesicle membrane and the duct wall. Moreover, the
magnitude of the pressure is significantly lessened as the reduced volume is decreased
(at fixed radius ratio). This result is expected, since lower reduced-volume vesicles can
form more streamlined bodies in pressure-driven flow. The non-axisymmetric pressure
distribution confirms that the velocity field will exhibit a strong dependence on the
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FIGURE 8. Vesicles (υ = 0.99) in square ducts as determined by 3-D BEM simulation,
viewed from yz (left) and xy (right) planes. The colours indicate the normal component
of the membrane surface traction jump fsn = n · f s. Shown are results for λ= (a) 0.6, (b)
0.7, (c) 0.8 and (d) 0.9.

azimuthal angle φ. This dependence is neglected in the lubrication approximation, and
so quantitative discrepancies between the lubrication theory and the BEM simulations
are expected at low confinement.

At very high confinement, the lubrication solutions indicate that the vesicle
conforms to the duct boundary and makes ‘apparent contact’, from a macroscopic
point of view (figures 9d, 11e). The apparent-contact area A∗ widens as the reduced
volume υ is decreased. Microscopically, a thin layer of suspending fluid separates
the membrane from the wall. The colour contours indicate very large pressures in
this region. The distribution of pressure is also interesting: the highest pressures are
located downstream and distributed uniformly over a wide area (the ‘orange ellipse’ in
figures 9d, 11e), while a thin ‘suction’ layer (the ‘blue croissant’) develops upstream.

The pressure distributions described above allude to a backflow (opposite in
direction to the mean flow) in the region of apparent contact. In figure 12, the
membrane slip velocity ūs = us − U is plotted for the parameter sets shown
in figures 9(a,d) and 11(a,e) (computed via lubrication theory). The vectors are
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FIGURE 9. Vesicles (υ=0.99) in square ducts as determined by lubrication theory, viewed
from yz (left) and xy (right) planes. The colours have the same meaning as in figure 8.
Shown are results for λ= (a) 0.9, (b) 1.0, (c) 1.1 and (d) 1.12.

normalized so that only the direction of flow is indicated. The velocity vectors
indeed indicate a backflow in the apparent-contact region. In the ‘corner regions’, the
membrane flows in the direction of the mean flow; the local speed (not shown) is
also high in the corner regions, relative to the contact regions. Thus, the wall ‘drags’
fluid backward, with forward flow supplied in the corner regions, and the vesicle
‘tank-treads’ through the duct. This motion is markedly unlike that of rigid particles,
and is permitted by the spatial asymmetry of the duct cross-section.

6.3. Critical geometry
The lubrication theory can be used to estimate the vesicle geometry at maximum
confinement (minimal clearance between the membrane and the wall). The term
‘estimate’ is used here, because it is numerically impossible to set the gap distance
to zero in the theoretical calculations. However, one can incrementally ‘march up’
in λ (at fixed υ) using the continuation method, decreasing the gap distance until
some acceptable threshold. Here, the minimum gap distance is chosen to be 0.001R,
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FIGURE 10. Vesicles (υ = 0.90) in square ducts as determined by 3-D BEM simulation,
viewed from yz (left) and xy (right) planes. The colours indicate the normal component
of the membrane surface traction jump fsn = n · f s. Shown are results for λ= (a) 0.7, (b)
0.8, (c) 0.9, (d) 1.0 and (e) 1.1.

at which point the continuation procedure is truncated and the value of λ is denoted
as the ‘apparent critical radius ratio’ λ∗. To reiterate, the exact value of λ∗ is
theoretically achieved by continuing until the film thickness drops to zero. Examples
of the near-critical geometry are shown in figures 9(d) and 11(e) for υ = 0.99 and
0.90, respectively.

From the numerical solutions at near-critical confinement, one can extract three
important geometric parameters: the critical radius ratio λ∗, the lubrication contact
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(a)

(b)

(c)

(d)

(e)

fsnR/(µV)

fsnR/(µV)

fsnR/(µV)

fsnR/(µV)

fsnR/(µV)

-5
-10
-15
-20
-25

-40

-10
-20
-30

0
-20
-40
-60
-80
-100

1000
0
-1000
-2000
-3000
-4000
-5000

100
0
-100
-200
-300
-400
-500

FIGURE 11. Vesicles (υ = 0.90) in square ducts as determined by lubrication theory,
viewed from yz (left) and xy (right) planes. The colours have the same meaning as in
figure 10. Shown are results for λ= (a) 1.1, (b) 1.2, (c) 1.3, (d) 1.4 and (e) 1.43.

area A∗ and the critical vesicle length L∗. The apparent-contact area A∗ can be
estimated by computing the total area of the region in which the normal stress jump
fsn ≈ −p exceeds a predetermined threshold (say, 100 µV/R); this region is denoted
as the ‘contact region’, since the vesicle makes apparent contact with the wall from
a macroscopic viewpoint. Figure 13 shows plots of the estimates for λ∗, A∗, and L∗

against the reduced volume υ, with the analogous circular-tube results shown for
comparison.
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(a)

(b)

FIGURE 12. Normalized membrane slip velocity vectors ūs/‖ūs‖, as computed by
lubrication theory. (a) υ = 0.99, λ = 0.9 (left) and 1.12 (right). (b) υ = 0.90, λ = 1.1
(left) and 1.43 (right). The corresponding surface traction distributions are shown in
figures 9(a,d) and 11(a,e).

At fixed reduced volume, the critical radius ratio λ∗ is higher in the square-duct
geometry than in the circular-tube geometry (figure 13a). Physically, this implies that
vesicles will have an easier time squeezing through a square duct than a circular tube,
due to the larger available cross-sectional area (relative to the square of the hydraulic
radius R2). The contact area A∗ in the square-duct geometry is much smaller than in
the circular tube (figure 13b), due to a larger fraction of ‘free’ surface in the corner
regions. As υ approaches unity, the contact area A∗ approaches zero in the square-
duct geometry, indicating that the surfaces of contact degenerate to points. As was
mentioned near the beginning of § 4, the applicability of lubrication theory when A∗=
0 is dubious in the evaluation of integral force moments. For υ = 0.99, the apparent-
contact area A∗ is small, but finite.

The critical vesicle length L∗ does not differ significantly between the square and
circular cross-sections (figure 13c), indicating that the vesicle shape is very nearly a
spherocylinder at maximal confinement. For vesicles in circular tubes, there are exact
equations relating the reduced volume υ and critical radius ratio λ∗ to the critical
aspect ratio L∗/(2R):

υ =
3
2

(
L∗

2R

)−1/2

−
1
2

(
L∗

2R

)−3/2

λ∗ =

(
L∗

2R

)1/2 (circular tubes). (6.1)

For the square-duct geometry, the numerical data are well fitted by the following
functions relating υ and λ∗ to L∗/(2R) over the range 0.85 6 υ 6 1:

υ = 1.502
(

L∗

2R

)−0.498

− 0.502
(

L∗

2R

)−1.518

λ∗ = 1.010
(

L∗

2R

)0.545 (square ducts). (6.2)
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FIGURE 13. Estimates of (a) the critical radius ratio λ∗, (b) the dimensionless contact
area A∗/R2 and (c) the aspect ratio L∗/(2R) plotted against the reduced volume υ, as
determined via lubrication theory. Results for both square and circular cross-sections are
shown.

The maximum relative difference in the reduced volume υ between (6.1) and (6.2)
(within the range of interpolation) is only 1 %; the maximum relative difference in λ∗
is 5 %.

In equations (6.1)–(6.2), υ and λ∗ are expressed in terms of L∗ as though L∗ were
the independent variable (in reality, υ is the control variable since the vesicle volume
and surface area are presumed to be unchanged by the deformation). The reason for
this choice is motivated by the experimental measurements, in that it is relatively easy
to measure the vesicle length L using optical microscopy. By contrast, the vesicle
reduced volume υ is less accurately measured. This quantity requires measurement
of both the vesicle volume and surface area, which are difficult to obtain with high
accuracy from 2-D micrographs. A large set of micrographs is required in order to
improve the statistical certainty of a reduced-volume measurement (Dahl et al. 2016).
However, in the presently considered flow geometry, only a single image of the vesicle
can be taken within a given time interval.

In order to estimate the reduced volume from the experiments, it is necessary to
make an assumption about the vesicle shape. It is assumed here that the vesicle
conforms to the duct walls and is given by the ‘critical geometry’ predicted via
lubrication theory. The analogous assumption for vesicle flow in circular tubes is that
the vesicle is a spherocylinder, which is the wall-conformal shape for that geometry.
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FIGURE 14. Aspect ratio L/(2R) plotted against the radius ratio λ. In the experimental
measurements, the aspect ratio L/(2R) is measured and the reduced volume υ is estimated
based on the correlation (6.2) from the lubrication theory; the diamond markers are
coloured accordingly.

Thus, in the experiments it is assumed that

L≈ L∗. (6.3)

By measuring the aspect ratio L/(2R) in the experiments, one obtains the reduced
volume υ from the correlation (6.2) (the analogous correlation for circular tubes is
(6.1)). The results from this procedure are shown in figure 14, where the aspect ratio
L/(2R) (determined by BEM, lubrication theory and experiments) is plotted against the
radius ratio λ. The solid lines indicate the lubrication solution above the critical limit
(maximum confinement) for a circular tube of equivalent hydraulic radius, while the
dashed lines indicate solutions below this limit. The experimental data are coloured
by reduced volume using the correlation (6.2) for the assumed critical geometry. The
general trend shown is that as the vesicle lengthens, the reduced volume decreases.

There are obvious uncertainties with the assumption made above. Essentially, the
reduced volume has been approximated by assuming that the vesicle is critically
confined, even though the radius ratio is varied in the experiments. The main
justification for this assumption is that only those experiments which give a
measurable extra pressure drop are selected; the extra pressure drop must be
sufficiently large in order to produce an observable deflection in the comparator
(see figure 6). Since the measured pressure drops are very large, it is reasonable to
assume that the vesicle fills a large portion of the cross-section. The slight geometric
variations between the actual shape and the shape assumed here are, therefore,
probably small. Thus, one expects that the above approximation will give a good
sense of the distribution of reduced volumes in the vesicle populations studied
experimentally. This will be important when quantifying the relative velocity U/V
and dimensionless extra pressure drop 1p+R/(µV) (presented below), which depend
strongly on the reduced volume.

6.4. Vesicle velocity and extra pressure drop
Figure 15 shows the relative velocity U/V plotted against the radius ratio λ as
determined by 3-D BEM simulations, lubrication theory and experiments. The solid
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FIGURE 15. Relative velocity U/V plotted against the radius ratio λ.

lines indicate the lubrication solution above the critical limit for a circular tube of
equivalent hydraulic radius, while the dashed lines indicate solutions below this limit.
Also shown are the experimental measurements of Ahmmed et al. (2018), which
were conducted at smaller radius ratios λ. Their measurements were performed using
a different microfluidic geometry than that reported in the present study. In their
experiments, vesicles were flowed through a linear, straight channel with a wide
cross-section (height = 25.0 ± 0.4 µm, width = 25.3 ± 0.4 µm, length = 150 µm)
and only the velocity ratio U/V was measured (the dimensionless extra pressure
drop 1p+R/(µV) could not be measured due to the absence of a reference channel).
In the presently reported experiments, a test channel with a smaller cross-section
(height= 12.6± 0.6 µm, width= 12.8± 0.7 µm, length= 330 µm) was used.

Accounting for the distribution of reduced volumes in the experiments, the
agreement between the lubrication theory and the experiments in figure 15 is
remarkable. Significantly, the theory correctly predicts subunit relative velocities
(U/V < 1) at high confinement. That is to say, the vesicle travels a speed slower
than the mean channel speed in this regime. At lower confinement (λ), the BEM
simulations agree qualitatively with previous experimental measurements reported
by Ahmmed et al. (2018). The apparent discrepancy between the BEM and the
lubrication theory at intermediate λ is attributed to the neglect of velocity gradients
along the azimuth in the lubrication theory, as discussed previously. These errors
were quantified in § 4.2 as a function of duct symmetry. Unfortunately, it is not
feasible at present to perform BEM simulations at much higher values of λ to within
a reasonable degree of accuracy.

Figure 16 shows the dimensionless extra pressure drop 1p+R/(µV) plotted against
λ, again comparing the simulations, theory and experiments. The discrepancy between
the BEM simulations and the lubrication theory at low values of λ has already
been discussed in detail. As expected, the distribution of the extra-pressure-drop
measurements can be attributed to variations in the reduced volume υ and the radius
ratio λ. All of the experimental measurements fall within the predictions of the
lubrication theory, whereas the BEM predictions lie in a regime outside the range
accessible by experiment. At low radius ratios λ, the vesicle is too small to occlude
the channel cross-section and therefore admits little resistance to flow. Consequently,
the experimentally measured extra-pressure-drop signal (1p+R/(µV) in figure 6b) is
too weak to be distinguished from the noise when λ is small. As λ increases to the
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FIGURE 16. Dimensionless extra pressure drop 1p+R/(µV) plotted against the radius
ratio λ.

point where the vesicle occupies a significant fraction of the channel cross-section,
the resistance to flow increases substantially and the experimental signal-to-noise ratio
improves. The lubrication calculations indicate that this precipitous rise in resistance
is principally due to dissipation in the thin-film region where the membrane nearly
makes contact with the channel walls.

7. Concluding remarks

The hydrodynamics of a vesicle translating through a square duct has been
investigated theoretically and compared against experimental measurements in
microfluidic channels. This study focused on vesicles of reduced volumes in the
range 0.85 6 υ 6 1 with unit viscosity contrast κ . The effect of the radius ratio λ
was explored, highlighting the impact of confinement. Bending elasticity, which is
expected to be insignificant under the flow conditions considered in this study, was
neglected in all of the calculations reported.

The 3-D BEM simulations are capable of simulating complex geometries and
represent an ‘exact solution’ (within numerical error) of Stokes’ equations of motion.
However, the BEM simulations cannot access the regime of high confinement
(large radius ratios λ) due to the prohibitive number of mesh elements required to
resolve the fluid flow in regions of lubrication. For this reason, a non-axisymmetric
lubrication theory was developed to predict the hydrodynamics of single vesicles
at high confinement. This theory falls into the regime accessible by microfluidic
manometer measurements, also presented in this chapter for single vesicles. The
theoretical calculations and experimental measurements show excellent agreement.
Discrepancies between the BEM calculations and the lubrication theory are attributed
to neglected viscous stresses (specifically, those associated with velocity gradients in
the azimuthal direction) in the lubrication approximation.

Several key insights were obtained from studying the transport of vesicles through
square conduits. Firstly, spatial inhomogeneities in surface flow on the vesicle
membrane create a mechanism by which the vesicle can tank-tread along the duct at
a velocity U that is smaller than the mean fluid velocity V . This result was seen in
both the lubrication calculations and in the microfluidic experiments. By contrast, in
circular tubes the surface flow is uniform and so a vesicle in transit behaves much
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like a rigid particle. Secondly, the area of contact A∗ is greatly reduced (whereas
the maximum radius radio λ∗ is increased) in the square-duct geometry as compared
to the circular-tube geometry. This difference has a qualitative effect on the extra
pressure drop 1p+, which increases with increasing A∗. As the reduced volume υ
approaches unity, surfaces of contact reduce to points of contact (A∗ → 0), which
invalidates the use of lubrication theory to accurately predict the extra pressure drop.

One of the more significant consequences of the work presented herein is that the
basic ingredient for predicting the vesicle’s motion is the surface incompressibility
of the membrane. All of the intrinsic membrane mechanics – e.g. bending elasticity
– were neglected. Bending elasticity is expected to play a role when the reduced
volume υ is smaller than the range under consideration here. Lower reduced-volume
vesicles can develop shapes with large curvature gradients, which in turn can produce
large bending stresses locally. Neglecting the bending stiffness of the membrane, it is
apparent that surface incompressibility is the key characteristic that separates vesicles
from, say, droplets and rigid particles flowing through polygonal conduits. As such,
it is expected that the results of this work will be applicable to other systems. For
instance, Pickering droplets contain particle-laden fluid–fluid interfaces, which act as
incompressible surfaces at high particle concentrations. Hydrogel beads, which are
important in various fluidic applications, may also be characterized as fluid particles
with incompressible surfaces. Surfactant-laden droplets and bubbles at high surface
pressures (high Gibbs elasticity) represent yet another system connected to the present
work.
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